
4H-STANZ Version: 8/2012-2d

Durchstanznachweis für Stütze auf Bodenplatte

Nach DIN EN 1992-1-1:2011-01 mit Nationalem Anhang Deutschland (DIN EN 1992-1-1/NA:2013-04)

Stützweiten

 $L_X = 4.00 \text{ m}$ Ly = 4.00 m

verankerte Zugbewehrung

 $as,zug,x = 30.00 \text{ cm}^2/\text{m}$ $a_{s,zug,y} = 33.50 \text{ cm}^2/\text{m}$

Betonfestigkeitsklasse C35/45 Betonstahlsorte B500A

1. Belastung

Bemessungswerte der Durchstanzlast im Schwerpunkt der Lasteinleitung

LK		Bezeichnung	Bemessungssit.	V Ed kN	M Ed,x kNm	MEd,y kNm	σEd,gd,m N/mm²
	1	neue Lastkomb.	ständig	1400.00	200.00	50.00	0.000

 $V_{Ed} \text{ - Querkraft } \quad M_{Ed,x}\!/M_{Ed,y} \text{ - Momente } \quad \sigma_{Ed,gd,m} \text{ - mittlere Bodenpressung}$

2. Materialsicherheitsbeiwerte

Bemessungssit.	γc	γs	
ständig und vorübergehend	1.50	1.15	

3. Einwirkung im kritischen Rundschnitt

 $v_{Ed,crit} = \beta \cdot V_{Ed,red} / (u_{crit} \cdot d)$

 $\begin{array}{l} \text{VEd,red} = \text{VEd} + \Delta \text{VEd} \\ \Delta \text{VEd} = \text{Acrit} \cdot \text{Ed,gd,m} \\ \beta = 1 + \text{sqrt}(\text{ (kx-MEd,x / VEd + ucrit / Wcrit,x)}^2 + \text{ (ky-MEd,y / VEd + ucrit / Wcrit,y)}^2) \geq 1.10 \end{array}$

W_{crit} = ∫lel dl mit dl:Differential des Umfangs e :Abstand von dl zur Achse von M_{Ed}

Beiwert zur Ermittlung der Schubspannungen aus Momentenbeanspruchung (nach [1], Tabelle 6.1)

 $c_1 = c_2 = 0.45 \Rightarrow k_X = k_y = 0.6$

Rechenwerte des kritischen Rundschnittes

LK			Wcrit,x m ²	
1			2.4606	

Maßgebende Schubspannung im kritischen Rundschnitt

LK	V Ed KN	∆V Ed kN	MEd,x,Sp KNm	MEd,y,Sp kNm	β -	VEd,crit N/mm²
1	1400.00	0.00	200.00	50.00	1.18	1.334

 $\Delta V_{Ed} \text{ - Resultierende aus Sohldruck } \qquad \text{M}_{Ed,x,Sp} \text{/M}_{Ed,y,Sp} \text{ - Momente bezügl. Schwerpunkt des Rundschnittes}$ β - Lasterhöhungsfaktor aus exzentrischer Belastung vEd.crit - Maßgebende Schubspannung im kritischen Rundschnitt

Durchstanzwiderstand im kritischen Rundschnitt 4.

 $v_{Rd,c} = C_{Rd,c} \cdot k \cdot (100 \cdot \rho_{I,zug} \cdot f_{ck})^{1/3} \ge v_{min} \left[N/mm^2 \right]$ $C_{Rd,c} = 0.15/\gamma_C$ $k = 1 + sqrt(200/d) \le 2.0 \text{ mit d [mm]}$ $\rho_{l,zug,max} = Minimum von (0.02, 0.5 f_{cd}/f_{yd})$ ρ I,zug = sqrt(ρ Ix,zug· ρ Iy,zug) $\leq \rho$ I,zug,max ν min = 0.0525/ γ c·k3/2·fck 1/2 für d \leq 600 mm

Maßstabsfaktor

k = 1 + sqrt(200/250) = 1.89 < 2

Längsbewehrungsgrad der verankerten Zugbewehrung

Mittelwert aus der Zugbewehrung bis zum Abstand 3d von der Stütze

 $\rho_{1x,zug} = 30/25 \cdot 10^{-2} = 0.012$ ρ 1y,zug = 33.5/25·10⁻² = 0.0134 $\rho_{1,zug} = sqrt(0.012 \cdot 0.0134) = 0.01268$

Durchstanzwiderstand ohne Durchstanzbewehrung

 $C_{Rd.c} = 0.15/1.5 = 0.1$

 $\rho_{1,zug,max} = Minimum von (0.02, 0.5.19.83/434.78) = 0.02 > 0.0127$ $v_{\text{min}} = 0.0525/1.5 \cdot 1.89^{3/2} \cdot 35^{0.5} = 0.54 \text{ N/mm}^2$ $VRd,c = 0.1 \cdot 1.89 \cdot (100 \cdot 0.01268 \cdot 35)^{1/3} = 0.671 \text{ N/mm}^2 > 0.54 \text{ N/mm}^2$

1.334 N/mm² > 0.671 N/mm² \Rightarrow Durchstanzbewehrung erforderlich

Maximaltragfähigkeit

 $v_{Rd,max} = \text{1.4.} v_{Rd,c}$

 $VRd.max = 1.4.0.671 = 0.939 \text{ N/mm}^2$

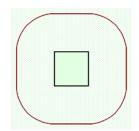
Widerstände bei ρ 1,zug = ρ 1,zug,max

 $VRd_{c}(\rho_{1,zug}=0.02) = 0.1 \cdot 1.89 \cdot (100 \cdot 0.02 \cdot 35)^{1/3} = 0.781 \text{ N/mm}^2$ VRd,max ($\rho_1,zug=0.02$) = 1.4·0.781 = 1.093 N/mm²

1.334 N/mm² > 1.093 N/mm² ⇒ maximaler Durchstanzwiderstand überschritten

5. Bemessung

Eine Bemessung durch zusätzliche Bewehrung ist nicht möglich!


Die Tragfähigkeit der Betondruckstrebe ist auch bei maximal anrechenbarer Zuglängsbewehrung von $\rho_{\text{1,zug,max}} = 0.02$ nicht zu gewährleisten. Dies kann nur durch Erhöhung der Betongüte und/oder der statischen Nutzhöhe erreicht werden.

Wie z.B. durch eine der folgenden Möglichkeiten:

- o Bei gleicher Nutzhöhe Betongüte auf C70/85 erhöhen.
- ∘ Bei gleicher Betongüte mittl. statische Nutzhöhe auf dm = 29.0 cm erhöhen.

Literatur und Normen:

[1] DIN EN 1992-1-1: Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken, Teil 1-1, Januar 2011

!!

