
4H-STANZ Version: 8/2012-2d

Durchstanznachweis für Wandende unter Deckenplatte

Nach DIN EN 1992-1-1:2011-01 mit Nationalem Anhang Deutschland (DIN EN 1992-1-1/NA:2013-04)

verankerte Zugbewehrung

 $as,zug,x = 22.00 \text{ cm}^2/\text{m}$ $a_{s,zug,y} = 22.00 \text{ cm}^2/\text{m}$

Betonfestigkeitsklasse C35/45 Betonstahlsorte B500A

1. Belastung

Bemessungswerte der Durchstanzlast im Schwerpunkt der Lasteinleitung

L	.K	Bezeichnung	Bemessungssit.	V Ed	$M_{Ed,x}$	M _{Ed,y}
				kN	kNm	kNm
	1	Volllast	ständig	350.00	0.00	0.00

 $V_{Ed} \text{ - Querkraft } \quad M_{Ed,x}\!/M_{Ed,y} \text{ - Momente}$

2. Materialsicherheitsbeiwerte

Bemessungssit.	γс	γs
ständig und vorübergehend	1.50	1.15

3. Einwirkung im kritischen Rundschnitt

 $v_{Ed,crit} = \beta \cdot V_{Ed} / (u_1 \cdot d)$

Abstand und Umfang des kritischen Rundschnittes

 $a_{r,1} = 2 \cdot d = 38 \text{ cm} \Rightarrow u_1 = 2.08 \text{ m}$

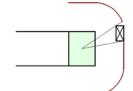
(unwirksamer Bereich infolge Lochflächen duLf = 0.26 m)

Lasterhöhungsfaktor entsprechend Bild 6.21DE

Wandende $\Rightarrow \beta = 1.35$

Maßgebende Schubspannung im kritischen Rundschnitt

LK	VEd	VEd, crit			
	kN	N/mm²			
1	350.00	1.197			


vEd,crit - Maßgebende Schubspannung im kritischen Rundschnitt

4. Durchstanzwiderstand im kritischen Rundschnitt

 $v_{Rd,c} = C_{Rd,c} \cdot k \cdot (100 \cdot \rho_{I,zug} \cdot f_{ck})^{1/3} \ge v_{min} [N/mm^2]$

 $C_{Rd,c} = 0.18/\gamma_C$

 $k = 1 + sqrt(200/d) \le 2.0 \text{ mit d [mm]}$ $\rho_{l,zug,max} = Minimum von (0.02, 0.5 f_{cd}/f_{yd})$ ρ I,zug = sqrt(ρ Ix,zug· ρ Iy,zug) $\leq \rho$ I,zug,max ν min = 0.0525/ γ c·k3/2·fck 1/2 für d \leq 600 mm

Maßstabsfaktor

 $k = 1 + sqrt(200/190) = 2.03 > 2 \implies k = 2$

Längsbewehrungsgrad der verankerten Zugbewehrung

Mittelwert aus der Zugbewehrung bis zum Abstand 3d von der Stütze

 $\rho_{1x,zug} = 22/19 \cdot 10^{-2} = 0.01158$

 $\rho_{1y,zug} = 22/19 \cdot 10^{-2} = 0.01158$

 $\rho_{1,zug} = sqrt(0.01158 \cdot 0.01158) = 0.01158$

Durchstanzwiderstand ohne Durchstanzbewehrung

 $C_{Rd,c} = 0.18/1.5 = 0.12$

 $\rho_{1,zug,max} = Minimum von (0.02, 0.5.19.83/434.78) = 0.02 > 0.0116$

 $v_{min} = 0.0525/1.5 \cdot 2^{3/2} \cdot 35^{0.5} = 0.586 \text{ N/mm}^2$

 $V_{Rd,c} = 0.12 \cdot 2 \cdot (100 \cdot 0.01158 \cdot 35)^{1/3} = 0.824 \text{ N/mm}^2 > 0.586 \text{ N/mm}^2$

1.197 N/mm² > 0.824 N/mm² \Rightarrow Durchstanzbewehrung erforderlich

Maximaltragfähigkeit

 $v_{Rd,max} = \text{1.4.} v_{Rd,c}$

 $VRd,max = 1.4 \cdot 0.824 = 1.154 \text{ N/mm}^2$

1.197 N/mm² > 1.154 N/mm² \Rightarrow Erhöhung der Zuglängsbewehrung auf $\rho_{1,zug} = 0.0129$

VRd,c (ρ 1,zug=0.0129) = 0.12·2·(100·0.0129·35)^{1/3} = 0.855 N/mm²

VRd,max ($\rho_1,zug=0.0129$) = 1.4·0.855 = 1.197 N/mm²

1.197 $N/mm^2 = 1.197 N/mm^2 \Rightarrow v_{Ed,crit}$ kann mit Durchstanzbewehrung aufgenommen werden

Grundwert der erforderlichen Durchstanzbewehrung

 $A_{\text{SW,Crit}} = \left(v_{\text{Ed}}\text{-}0.75\text{-}v_{\text{Rd,c}}\right) \cdot s_r \cdot u_1 / \left(1.5 \cdot f_{\text{ywd,ef}}\right)$

 $f_{ywd,ef} = 250 \text{+} 0.25 \cdot d \leq f_{ywd}$

 $f_{ywd,ef} = 250+0.25\cdot190 = 297.5 \text{ N/mm}^2$

 $f_{ywd} = 500/1.15 = 434.8 \text{ N/mm}^2 > 297.5 \text{ N/mm}^2$

 $sr = 0.75 \cdot 19 = 14.3$ cm

 $A_{sw,crit} = (1.197 - 0.75 \cdot 0.855) \cdot 14.3 \cdot 2.08/(1.5 \cdot 297.5) \cdot 100 = 3.69 \text{ cm}^2$

5. Bemessung

Bügelbewehrungsreihen 5.1.

 $A_{sw,min} = 0.08/1.5 f_{ck}^{0.5}/f_{yk} s_{r,max} u$

Stabdurchmesser

 $\max \mathcal{O}_{sw} \leq 0.05 \cdot 190 \approx 10 \text{ mm} \Rightarrow \text{gewählt } \mathcal{O} 10$

Hinweis zum Einbau von 10er Bügeln: beide Bewehrungslagen müssen umfasst werden

Nr	1Ksw	Asw,erf	Sr	1 _w	u	Asw,min	min n	gewählt	St	Asw, vorh
	-	Cm ²	cm	cm	m	Cm²	-	Schenke1	cm	Cm ²
1	2.50	9.22	9.5	9.5	1.31	1.18	5	12 Ø 10	10.9	9.42
2	1.40	5.16	14.3	23.8	1.69	1.52	6	8 Ø 10	21.1	6.28
3	1.00	3.69	14.3	38.0	2.08	1.87	8	8 Ø 10	26.0	6.28
4	1.00	3.69	14.3	52.3	2.47	2.22	7	8 Ø 10	30.8	6.28
5	1.00	3.69	14.3	66.5	2.86	2.57	8	8 Ø 10	35.7	6.28

Zulässige tangentiale Abstände der Schenkel:

 $st \le 28.5$ cm in der 1., 2. und 3. Reihe

 $st \le 38.0$ cm in der 4. und 5. Reihe

Hinweis zur Lagetoleranz:

Nach [2] sind radiale Abweichungen bis ±0.2d (hier ±3.8cm) bezüglich der theoretischen Schnittführung erlaubt. Wichtig ist dabei, dass die erste Reihe immer zwischen 0.3d und 0.5d liegt.

 κ_{SW} - Anpassungsfaktor nach [1], NCI zu 6.4.5 (1) s_r - radialer Abstand zur vorherigen Reihe I_W - Abstand zum Stützenrand u - Länge des wirksamen Rundschnittes

Aswmin - erf. Mindestdurchstanzbewehrung der gesamten Reihe 🔄 - mittlerer tangentialer Abstand der Schenkel im Schnitt

5.2. Nachweis im äußeren Rundschnitt

Querkrafttragfähigkeit im Abstand 1.5d von der letzten Bewehrungsreihe nachweisen

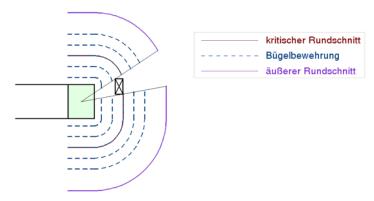
 $v_{Rd,c} = C_{Rd,c} \cdot k \cdot (100 \cdot \rho_{I,zug} \cdot f_{ck})^{1/3} \ge v_{min} [N/mm^2]$

 $C_{Rd,c} = 0.15/\gamma_{c}$

Umfang des äußeren Rundschnittes

 $l_{w,out} = 66.5 + 1.5 \cdot 19 = 95 \text{ cm} \Rightarrow u_{out} = 3.64 \text{ m}$

Maßgebende Schubspannung


 $VEd,out = 1.197 \cdot 2.08/3.64 = 0.684 \text{ N/mm}^2$

Querkraftragfähigkeit

 $C_{Rd,c} = 0.15/1.5 = 0.1$

 $V_{Rd,c} = 0.1 \cdot 2 \cdot (100 \cdot 0.01158 \cdot 35)^{1/3} = 0.687 \text{ N/mm}^2 > 0.586 \text{ N/mm}^2$

$0.684 \text{ N/mm}^2 \approx 0.687 \text{ N/mm}^2 \Rightarrow \text{Nachweis erbracht}$

5.3. Zusätzliche Zuglängsbewehrung

Um den erforderlichen mittleren Bewehrungsgrad $ho_{1,zug}=0.0129$ zu gewährleisten ist die Zugbewehrung innerhalb des Bereiches mit Abstand 3d von der Stütze zu erhöhen:

x-Richtung: $\Delta a_{sx,zug,erf} = 2.52 \text{ cm}^2/\text{m}$ y-Richtung: $\Delta a_{sy,zug,erf} = 2.52 \text{ cm}^2/\text{m}$

gewählt:

x-Richtung: Ø 10 mit s ≤ 31 cm y-Richtung: Ø 10 mit s ≤ 31 cm

Diese ist bis zum Abstand von 0.95 m zur Lasteinleitung einzulegen.

6. Mindestlängsbewehrung zur Sicherstellung der Querkrafttragfähigkeit entsprechend [3] Tabelle NA.6.1.1

Zugseite	Richtung	η	MEd,min	aso,min	asu,min	Verteilungsbreite
		-	kNm/m	cm²/m	cm²/m	m
oben	х	0.125	43.75	5.22		(je m Plattenbreite)
	y	0.250	87.50	10.97		0.00
unten	x	0.125	43.75		5.22	(je m Plattenbreite)
	у	0.000	0.00			0.00

 $[\]eta$ - Momentenbeiwert ~~ mEd,min = $\eta \cdot V_{Ed}$ - Mindestbemessungsmoment

Literatur und Normen:

- [1] DIN EN 1992-1-1/NA: Nationaler Anhang National festgelegte Parameter Eurocode 2, Teil 1-1, April 2013
 [2] DAfStb Heft 525: Erläuterungen zu DIN 1045-1, 2. überarb. Aufl., Beuth, 2010
 [3] DIN EN 1992-1-1: Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken, Teil 1-1, Januar 2011