
Konsole EC 3-1-8 (12.10), NA: Deutschland

Eingabeprotokoll

4H-EC3SK Version: 6/2025-1b

Details (Schnitt A - A)

Stahlsorte

Stahlgüte S235

Parameter der Stütze

Profil IPE550

Verstärkung des Profils durch Quersteifen (Stegsteifen in Höhe von Trägerzug- und -druckflansch, det = 180.0 mm):

Dicke t_{st} = 10.0 mm, Breite b_{st} = 99.5 mm, Länge l_{st} = 515.6 mm

Aussparung an den Steifen cst = 36.0 mm

Schweißnähte ast,f = 5.0 mm, ast,w = 5.0 mm

Parameter des Trägers

Profil HE200A

Verstärkung des Profils durch Quersteifen:

Dicke $t_{st} = 10.0 \text{ mm}$, Breite $b_{st} = 96.8 \text{ mm}$, Länge $l_{st} = 170.0 \text{ mm}$

Aussparung an den Steifen cst = 27.0 mm Schweißnähte $a_{st,f} = 5.0 \text{ mm}, a_{st,w} = 5.0 \text{ mm}$

Schweißnähte

Trägerflansch oben: Kehlnaht, Nahtdicke a = 5.0 mm

Trägersteg: Kehlnaht, Nahtdicke a = 5.0 mm

Trägerflansch unten: Kehlnaht, Nahtdicke a = 5.0 mm

Parameter der Verbindung

geschweißter Anschluss

Abstand der Querbelastung ∆a = 205.0 mm

Nachweis der Lasteinleitung:

Querbelastung auf dem Obergurt der Konsole aus einem Lastträger (Trägerkreuzung) Profil HE260B Nachweis der Ermüdung:

Schadensäquivalenzfaktoren $\lambda_{\sigma} = 0.315$, $\lambda_{\tau} = 0.500$

Ermittlung der Tragfähigkeiten

Nachweis der Konsole-Stützenverbindung, Grenzzustand der Tragfähigkeit (GZT)

Nachweis der Lasteinleitung, Trägerkreuzung, Grenzzustand der Tragfähigkeit (GZT)

Ermüdungsnachweise der Verbindung sowie des Konsolprofils, Grenzzustand der Ermüdung (GZE)

Konsolbelastung und Schnittgrößen im Schnittpunkt der Systemachsen (GZT)

Lk 	F1,Ed KN
1	89.00
2	61.50

F_{1,Ed}: Belastung der Konsole

Konsolbelastung (GZE)

Lk	F1,Ed
	kN
1	
2	56.91

F_{1,Ed}: Belastung der Konsole

Beanspruchbarkeit von Querschnitten $\gamma_{M0} = 1.00$

Beanspruchbarkeit von Bauteilen bei Stabilitätsversagen ym1 = 1.10

Beanspruchbarkeit von Schrauben, Schweißnähten, Blechen auf Lochleibung γ_{M2} = 1.25

Materialsicherheitsbeiwert (GZE)

Bemessungskonzept: Schadenstoleranz, Schadensfolgen: hoch ⇒ Ermüdungsfestigkeit γMf = 1.15

Nachweise

2.1. Ergebnistabelle (GZT)

2.1.1. Ausnutzungen

Lk	Uj	U ₁	Uj,b	Uj,σ	Uj,τ	$U_{j,w}$	Uj,r	U1,σ	U1,r	U
				= = =	= = =					
1	0.586	0.375	0.586	0.236	0.285	0.370	0.290	0.375	0.253	0.586*
2	0.405	0.259	0.405	0.163	0.197	0.256	0.201	0.259	0.175	0.405

Uj: res. Ausnutzung aus Träger-Stütze-Anschluss; Uj: res. Ausnutzung aus Lasteinleitung; Uj,b: Querschnittsausnutzung Träger

U[']_{j,σ}: Ausnutzung aus Biegung; U_{j,τ}: Ausnutzung aus Querkraft; U_{j,w}: Ausnutzung aus Schweißnaht

Uj̇_r: Ausnutzung aus Steifen/Rippen; Uḷσ: Ausnutzung aus Spannungen am Steganschnitt; Ul̞ɾ: Ausnutzung aus Rippen

U: Ausnutzung der Verbindung

2.2. Anschluss an die Stütze (GZT)

Biegesteifer Trägeranschluss EC 3-1-8 (12.10), NA: Deutschland

Datencheck

ok

2.2.1. Ergebnistabelle

Ausnutzung

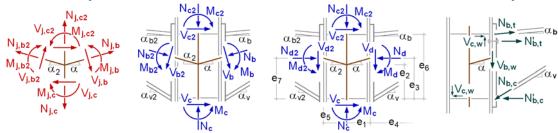
Lk		Um	U_{wp}	Ucf	U_{sb}	$U_{\mathtt{s}\mathtt{s}}$	U
1		0.236					
2	0.405	0.163	0.075	0.197	0.256	0.201	0.405

 $U_{\sigma,b}$: Spannungsausnutzung am Träger; U_m : Ausnutzung aus Biegung; U_{wp} : Ausnutzung aus Schub im Stützensteg U_{cf} : Ausnutzung aus Schub im Stützenflansch; U_{sb} : Ausnutzung aus Schweißnaht; U_{ss} : Ausnutzung aus Steifen/Rippen U: Ausnutzung der Verbindung

2.2.2. Endergebnis

Maximale Ausnutzung [Lk 1]: max U = 0.586 < 1 ok

2.2.3. Lk 1 (maßgebend)


2.2.3.1. Bemessungsgrößen

^{*)} maximale Ausnutzung

^{*)} maximale Ausnutzung

Knotenschnittgrößen Anschnitt Anschluss ⊥ zur Anschlussebene

Teilschnittgrößen

Neigungswinkel: $\alpha_b = \alpha = \alpha_V = 0^\circ$

Abstände: $e_1 = 275.0 \text{ mm}$, $e_3 = 90.0 \text{ mm}$, $e_2 = 90.0 \text{ mm}$, $e_6 = 180.0 \text{ mm}$

Schnittgrößen senkrecht zu den Anschlussebenen

Anschnitt Träger

 $M_d = 18.24 \ kNm, \ V_d = 89.00 \ kN$

Teilschnittgrößen

 $N_{b,t} = -N_d \cdot z_{bu}/z_b + M_d/z_b = 101.36 \ kN, \ z_b = 180.0 \ mm, \ z_{bu} = 90.0 \ mm$ $N_{b,c} = N_d \cdot z_{bo}/z_b + M_d/z_b = 101.36 \text{ kN}, z_b = 180.0 \text{ mm}, z_{bo} = 90.0 \text{ mm}$ $V_{b,t} = -N_{b,t} \cdot sin(\alpha_b) = 0.00 \ kN, \quad V_{b,c} = N_{b,c} \cdot sin(\alpha_V) = 0.00 \ kN, \quad V_{b,w} = V_d - V_{b,t} - V_{b,c} = 89.00 \ kN, \quad V_{b,w} = V_d - V_{b,t} - V_{b,c} = 89.00 \ kN, \quad V_{b,w} = V_d - V_{b,t} - V_{b,c} = 89.00 \ kN, \quad V_{b,w} = V_d - V_{b,t} - V_{b,c} = 89.00 \ kN, \quad V_{b,w} = V_d - V_{b,t} - V_{b,c} = 89.00 \ kN, \quad V_{b,w} = V_d - V_{b,t} - V_{b,c} = 89.00 \ kN, \quad V_{b,w} = V_d - V_{b,t} - V_{b,c} = 89.00 \ kN, \quad V_{b,w} = V_d - V_{b,t} - V_{b,c} = 89.00 \ kN, \quad V_{b,w} = V_d - V_{b,t} - V_{b,c} = 89.00 \ kN, \quad V_{b,w} = V_d - V_{b,t} - V_{b,c} = 89.00 \ kN, \quad V_{b,w} = V_d - V_{b,t} - V_{b,c} = 89.00 \ kN, \quad V_{b,w} = V_d - V_{b,t} - V_{b,c} = 89.00 \ kN, \quad V_{b,w} = V_d - V_{b,t} - V_{b,c} = 89.00 \ kN, \quad V_{b,w} = V_d - V_{b,t} - V_{b,c} = 89.00 \ kN, \quad V_{b,w} = V_d - V_{b,t} - V_{b,c} = 89.00 \ kN, \quad V_{b,w} = V_d - V_{b,t} - V_{b,c} = 89.00 \ kN, \quad V_{b,w} = V_d - V_{b,t} -$

2.2.3.2. Querschnittstragfähigkeit im Anschnitt

elastischer Spannungsnachweis für My = -18.24 kNm, Vz = 89.00 kN Nachweis: $\sigma_V = 137.61 \text{ N/mm}^2 < \sigma_{V,Rd} = 235.00 \text{ N/mm}^2 \Rightarrow U_{\sigma} = 0.586 < 1 \text{ ok}$ c/t-Verhältnis: einseitig gestützt: Ausnutzung Uc/t = 0.249 < 1 ok beidseitig gestützt: Ausnutzung Uc/t = 0.063 < 1 ok

2.2.3.3. Grundkomponenten

2.2.3.3.1. Gk 1: Stützenstegfeld mit Schubbeanspruchung

Übertragungsparameter (EC 3-1-8, 5.3(9)) β_i = 1.00 ≤ 2 für M_{i1} = 42.72 kNm (M_{i2} = 0)

467⁶ 172 In der Skizze sind nur die wesentlichen Abmessungen maßstäblich angegeben. Die Geometrie des Anschlusses ist nur angedeutet.

Schlankheit des Stützenstegs d₀/twc = 42.13 < 69·ε = 69.00 ⇒ Verfahren anwendbar plastische Schubtragfähigkeit ohne Steifen V_{wp,Rd} = (0.9·f_{y,w}·A_v) / (3^{1/2}·γ_{M0}) = 883.4 kN Anordnung von zwischenliegenden Stegsteifen:

zusätzliche Tragfähigkeit Vwp,add,Rd = 4·Mpl,fc,Rd/dst = 81.1 kN

 $V_{wp,add,Rd} > 2 \cdot (M_{pl,fc,Rd} + M_{pl,st,Rd})/d_{st} = 53.5 \text{ kN} \implies V_{wp,add,Rd} = 53.5 \text{ kN}$ plastische Schubtragfähigkeit mit Quersteifen Vwp,Rd = 936.9 kN

2.2.3.3.2. Gk 2: Stützensteg mit Querdruckbeanspruchung

Übertragungsparameter (EC 3-1-8, 5.3(9)) βj = 1.00 ≤ 2 für Mj₁ = 42.72 kNm (Mj₂ = 0)

a5 N 467⁶

In der Skizze sind nur die wesentlichen Abmessungen maßstäblich angegeben. Die Geometrie des Anschlusses ist nur angedeutet.

Tragfähigkeit ohne Quersteifen:

wirksame Breite des Stützenstegs für Querdruck beff,c = tf,b + 2·21/2·ab + 5·(tf,c+sc) = 230.1 mm

Abminderungsbeiwert $k_w = 1.0 \ (\sigma_{com,Ed} = 0)$

Plattenschlankheitsgrad $\lambda_p = 0.932 \cdot [(b_{eff,c} \cdot d_w \cdot f_y) / (E \cdot t_w^2)]^{1/2} = 0.921$

Abminderungsbeiwert für Stegbeulen $\rho = (\lambda_p - 0.2) / \lambda_p^2 = 0.850$

Abminderungsbeiwert für die Interaktion mit Schubbeanspruchung $\beta = 1 \implies \omega = 0.928$

Tragfähigkeit eines Stegs mit Querdruckbeanspruchung:

 $F_{c,w,Rd} = \omega \cdot (k_w \cdot b_{eff,c} \cdot t_w \cdot f_{y,w}) / \gamma_{M0} = 556.88 \text{ kN}$

 $F_{c,w,Rd} = \omega \cdot \left(k_w \cdot \rho \cdot b_{eff,c} \cdot t_w \cdot f_{y,w}\right) / \gamma_{M1} = 430.18 \ kN \ (maßgebend)$

Verstärkung des Stegs durch Quersteifen:

Voraussetzung: Steifen nicht beulgefährdet: Q-Klasse 2 ≤ 3 ok

Mindestanforderung an das Trägheitsmoment der Steifen:

Länge des Beulfelds (Abstand der Steifen) a = 180.0 mm

Steghöhe zwischen den Flanschen hwc = 515.6 mm

Trägheitsmoment der Steifen Ist = 771.75 cm⁴

Mindestträgheitsmoment für a/hwc = 0.35 < 21/2: lst,min = 867.87 cm⁴ > lst nicht ok !!

⇒ Quersteifen nicht wirksam!

Tragfähigkeit des oberen Trägerflanschs:

Tragfähigkeit ohne Quersteifen:

wirksame Breite des Stützenstegs für Querdruck beff,c = $t_{f,b}$ + $2 \cdot 2^{1/2} \cdot a_b$ + $5 \cdot (t_{f,c} + s_c)$ = 230.1 mm

Abminderungsbeiwert $k_W = 1.0 \ (\sigma_{com,Ed} = 0)$

Plattenschlankheitsgrad $\lambda_p = 0.932 \cdot [(b_{eff,c} \cdot d_w \cdot f_y) \: / \: (E \cdot t_w^2)]^{1/2} = 0.921$

Abminderungsbeiwert für Stegbeulen $\rho = (\lambda_p - 0.2) / \lambda_p^2 = 0.850$

Abminderungsbeiwert für die Interaktion mit Schubbeanspruchung $\beta = 1 \implies \omega = 0.928$

Tragfähigkeit eines Stegs mit Querdruckbeanspruchung:

 $F_{c,w,Rd} = \omega \cdot (k_w \cdot b_{eff,c} \cdot t_w \cdot f_{y,w}) / \gamma_{M0} = 556.88 \text{ kN}$

 $F_{c,w,Rd} = \omega \cdot (k_w \cdot \rho \cdot b_{eff,c} \cdot t_w \cdot f_{y,w}) / \gamma_{M1} = 430.18 \text{ kN (maßgebend)}$

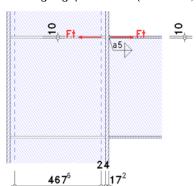
Verstärkung des Stegs durch Quersteifen:

Voraussetzung: Steifen nicht beulgefährdet: Q-Klasse 2 ≤ 3 ok

Mindestanforderung an das Trägheitsmoment der Steifen:

Länge des Beulfelds (Abstand der Steifen) a = 180.0 mm

Steghöhe zwischen den Flanschen hwc = 515.6 mm


Trägheitsmoment der Steifen Ist = 771.75 cm⁴

Mindestträgheitsmoment für a/hwc = 0.35 < 21/2: lst,min = 867.87 cm⁴ > lst nicht ok!!

⇒ Quersteifen nicht wirksam!

2.2.3.3.3. Gk 3: Stützensteg mit Querzugbeanspruchung

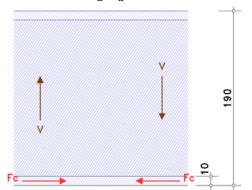
Übertragungsparameter (EC 3-1-8, 5.3(9)) $\beta_j = 1.00 \le 2$ für $M_{j1} = 42.72$ kNm ($M_{j2} = 0$)

In der Skizze sind nur die wesentlichen Abmessungen maßstäblich angegeben. Die Geometrie des Anschlusses ist nur angedeutet.

Verstärkung des Stegs durch Quersteifen:

Fläche der Steifen einschl. Steg Ast = (2·bst+twc)·tst = 21.00 cm²

Tragfähigkeit eines Stützenstegs mit Querzug Ft,wc,Rd = Astfy,st / γM0 = 493.5 kN


2.2.3.3.4. Gk 7: Trägerflansch und -steg mit Druckbeanspruchung

Flansch unten: Q-Klasse 1

Steg: Q-Klasse 1 Gesamt: Q-Klasse 1

Querschnittsklasse des Trägers: 1

Zur Berücksichtigung der Momenten-Querkraft-Interaktion VEd = 89.0 kN

In der Skizze sind nur die wesentlichen Abmessungen maßstäblich angegeben. Die Geometrie des Anschlusses ist nur angedeutet.

Beanspruchung durch Biegung mit Querkraft: $V_{Ed} = 89.0 \text{ kN} \le 122.7 \text{ kN} = V_{pl,Rd}/2 \implies \text{kein Einfluss Tragfähigkeit Mc,Rd} = M_{pl,Rd} = (W_{pl} \cdot f_y) / \gamma_{M0} = 100.92 \text{ kNm}, W_{pl} = 429.45 \text{ cm}^3$

Tragfähigkeit eines Flanschs (und Stegs) mit Druck

 $F_{c,f,Rd} = M_{c,Rd} / (h - t_f) = 560.67 \text{ kN}$

Tragfähigkeit des oberen Trägerflanschs:

Beanspruchung durch Biegung mit Querkraft: $V_{Ed} = 89.0 \text{ kN} \le 122.7 \text{ kN} = V_{PI,Rd}/2 \implies \text{kein Einfluss}$

Tragfähigkeit $M_{c,Rd} = M_{pl,Rd} = (W_{pl} \cdot f_y) / \gamma_{M0} = 100.92 \text{ kNm}, W_{pl} = 429.45 \text{ cm}^3$

Tragfähigkeit eines Flanschs (und Stegs) mit Druck

 $F_{c,f,Rd} = M_{c,Rd} / (h - t_f) = 560.67 \text{ kN}$

2.2.3.4. Anschlusstragfähigkeit

Übertragungsparameter: $\beta_i = 1.00$

2.2.3.4.1. Biegetragfähigkeit

Abstand der Zugkraft vom Druckpunkt: z = 180.0 mm

Tragfähigkeit

 $F_{Rd} = 430.2 \text{ kN}$

Tragfähigkeit der Flansche (Druck)

 $\Sigma F_{c,Rd}^* = 860.4 \text{ kN}$

Biegetragfähigkeit

 $M_{j,Rd} = F_{Rd} \cdot z = 77.4 \text{ kNm}$

Zugtragfähigkeit

 $N_{j,t,Rd} = F_{t,Rd} = 493.5 \text{ kN}$

Drucktragfähigkeit

 $N_{j,c,Rd} = \Sigma F_{c,Rd}^* = 860.4 \text{ kN}$

2.2.3.4.2. Schubtragfähigkeit

Schubtragfähigkeit des Stützenflanschs

 $V_{cf,Rd} = 312.71 \text{ kN}$

Schubtragfähigkeit des Stützenstegs

maßgebende Grundkomponente: 1

 $V_{wp,Rd} = 936.9 \text{ kN}$

2.2.3.4.3. Gesamt

 $M_{j,Rd} = 77.4 \text{ kNm}$ $N_{j,t,Rd} = 493.5 \text{ kN}$ $N_{j,c,Rd} = 860.4 \text{ kN}$ $V_{wp,Rd} = 936.9 \text{ kN}$ $V_{cf,Rd} = 312.7 \text{ kN}$

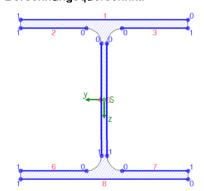
2.2.3.5. Nachweise

2.2.3.5.1. Nachweis der Anschlusstragfähigkeit mit der Komponentenmethode

MEd = Md = 18.24 kNmQuerkraft: $V_{Ed} = |V_d| = 89.00 \text{ kN}$

Schubkraft: $V_{c,w,Ed} = M_d/z - (V_{c1}-V_{c2})/2 = 101.36 \text{ kN}, z = 180.0 \text{ mm}$

Schubkraft: $V_{b,w,Ed} = 89.00 \text{ kN}$


 $Med/M_{j,Rd} = 0.236 < 1 ok$ $V_{c,w,Ed}/V_{wp,Rd} = 0.108 < 1 \text{ ok}$ $V_{b,w,Ed}/V_{cf,Rd} = 0.285 < 1 ok$

2.2.3.5.2. Nachweis der Schweißnähte am Trägerprofil

Naht 1: Trägerflansch mit Zug außen Nähte 2,3: Trägerflansch mit Zug innen Nähte 4,5: Trägersteg beidseitig

Naht 8: Trägerflansch mit Druck außen Nähte 6,7: Trägerflansch mit Druck innen

Naht 4: Nahtdicke a = 5.0 mm > a_{max} = 0.7·t_{min} = 4.5 mm (Schweisstechnik, s. DIN 18800) !! Berechnungsquerschnitt:

Naht 1:	$a_w = 5.0 \text{ mm}$	$l_w = 200.0 \text{ mm}$
Naht 2:	$a_w = 5.0 \text{ mm}$	$l_w = 78.8 \text{ mm}$
Naht 3	siehe Naht 2	

Naht 4: $a_w = 5.0 \text{ mm}$

Naht 5: siehe Naht 4

 $l_w = 134.0 \text{ mm}$

 $l_w = 78.8 \text{ mm}$

Naht 6: $a_w = 5.0 \text{ mm}$

Naht 7: siehe Naht 6

Naht 8: $a_w = 5.0 \text{ mm}$ $l_w = 200.0 \text{ mm}$

Bemessungsgrößen bezogen auf den Schwerpunkt des Profils:

 $M_{y,Ed} = -18.24 \text{ kNm}, V_{z,Ed} = 89.00 \text{ kN}$

Querschnittswerte bezogen auf den Schwerpunkt des Linienquerschnitts:

 $\Sigma A_w = 49.15 \text{ cm}^2$, $A_{w,z} = 13.40 \text{ cm}^2$, $\Sigma I_w = 98.3 \text{ cm}$ $l_{w,y} = 3143.45 \text{ cm}^4$, $l_{w,z} = 1328.35 \text{ cm}^4$, $\Delta z_w = 0.0 \text{ mm}$

Schnittgrößenverteilung:

Naht 1: $N_w = 55.14 \text{ kN}$ Naht 2: $N_w = 19.43 \text{ kN}$

Naht 3: siehe Naht 2 Naht 4: $M_{y,w} = -0.58 \text{ kNm}$

Naht 5: siehe Naht 4

Naht 6: $N_w = -19.43 \text{ kN}$ siehe Naht 6 Naht 7:

Naht 8: $N_w = -55.14 \text{ kN}$

aus konventioneller Querkraftaufteilung: Vz,w = 89.00 kN

Nachweise in den Endpunkten der Nähte:

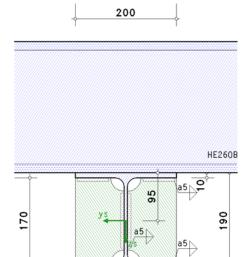
 \Rightarrow U_w = 0.265 < 1 ok Naht 1, Pkt. 0: $\sigma_{W,x} = 55.14 \text{ N/mm}^2$ Naht 2, Pkt. 0: $\sigma_{w,x} = 49.34 \text{ N/mm}^2$ \Rightarrow U_w = 0.237 < 1 ok Naht 4, Pkt. 0: $\sigma_{w,x} = 38.89 \text{ N/mm}^2$ $\tau_{W,z} = 66.42 \text{ N/mm}^2$ \Rightarrow U_w = 0.370 < 1 ok Pkt. 1: $\sigma_{W,x} = -38.89 \text{ N/mm}^2$ $\tau_{W,z} = 66.42 \text{ N/mm}^2$ \Rightarrow U_w = 0.370 < 1 ok Naht 6, Pkt. 0: $\sigma_{w,x} = -49.34 \text{ N/mm}^2$ \Rightarrow U_w = 0.237 < 1 ok Pkt. 0: $\sigma_{w,x} = -55.14 \text{ N/mm}^2$ \Rightarrow U_w = 0.265 < 1 ok Naht 8,

Ergebnis:

Naht 4, Pkt. 0: $\sigma_{w,x} = 38.89 \text{ N/mm}^2$ $\tau_{W,z} = 66.42 \text{ N/mm}^2$

Max: $F_{w,Ed} = 384.82 \text{ kN/m} < F_{w,Rd} = 1039.23 \text{ kN/m} \Rightarrow U_w = 0.370 < 1 \text{ ok}$

2.2.3.5.3. Nachweis der Stegsteifen


```
Drucksteife (unten)
F_{c,Ed} = 105.61 \text{ kN}
Kräfte je Rippe
F = 0.5 \cdot F_{c,Ed} \cdot (b_{f-2} \cdot r - t_{w})/b_{f} = 37.95 \text{ kN}, H = F \cdot e_{f}/e_{H} = 4.98 \text{ kN}
Voraussetzung: Steifen nicht beulgefährdet: Q-Klasse 2 ≤ 3 ok
Querschnitt am Flansch
Drucktragfähigkeit N<sub>c,Rd</sub> = (A·f<sub>y</sub>) / γ<sub>M0</sub> = 149.11 kN
Bemessungsgröße: FEd = (F^2 + 3 \cdot H^2)^{1/2} = 38.91 \text{ kN}
F_{Ed} = 38.91 \text{ kN} < F_{Rd} = 149.11 \text{ kN} \implies U = 0.261 < 1 \text{ ok}
Querschnitt am Steg
Schubtragfähigkeit V<sub>Rd</sub> = (A<sub>V</sub>·f<sub>y</sub>) / (3<sup>1/2</sup>·γ<sub>M0</sub>) = 601.86 kN
Bemessungsgröße: FEd = F = 37.95 kN
F_{Ed} = 37.95 \text{ kN} < F_{Rd} = 601.86 \text{ kN} \implies U = 0.063 < 1 \text{ ok}
Schweißnähte am Flansch
Tragfähigkeit einer Schweißnaht: Fw.Rd = 1039.23 kN/m
Bemessungsgröße: F_{Ed} = (F^2 + H^2)^{1/2} / (2 \cdot b_1) = 301.59 \text{ kN/m}, b_1 = 63.4 \text{ mm}
F_{Ed} = 301.59 \text{ kN/m} < F_{Rd} = 1039.23 \text{ kN/m} \Rightarrow U = 0.290 < 1 \text{ ok}
Schweißnähte am Steg
Tragfähigkeit einer Schweißnaht: Fw.Rd = 1039.23 kN/m
dreiseitiger Rippenanschluss:
Bemessungsgröße: F_{Ed} = F / (2 \cdot l_1) = 42.77 \text{ kN/m}, l_1 = 443.6 \text{ mm}
F_{Ed} = 42.77 \text{ kN/m} < F_{Rd} = 1039.23 \text{ kN/m} \Rightarrow U = 0.041 < 1 \text{ ok}
Zugsteife (oben)
F_{t,Ed} = 105.61 \text{ kN}
Kräfte je Rippe
F = 0.5 \cdot F_{t,Ed} \cdot (b_{f}-2 \cdot r \cdot t_{w})/b_{f} = 37.95 \text{ kN}, H = F \cdot e_{f}/e_{H} = 4.98 \text{ kN}
Querschnitt am Flansch
Zugtragfähigkeit Nt,Rd = 149.11 kN
Bemessungsgröße: F_{Ed} = (F^2 + 3 \cdot H^2)^{1/2} = 38.91 \text{ kN}
F_{Ed} = 38.91 \text{ kN} < F_{Rd} = 149.11 \text{ kN} \Rightarrow U = 0.261 < 1 \text{ ok}
Querschnitt am Steg
Schubtragfähigkeit V_{Rd} = (A_v \cdot f_v) / (3^{1/2} \cdot \gamma_{M0}) = 601.86 \text{ kN}
Bemessungsgröße: Fed = F = 37.95 kN
F_{Ed} = 37.95 \text{ kN} < F_{Rd} = 601.86 \text{ kN} \implies U = 0.063 < 1 \text{ ok}
Schweißnähte am Flansch
Tragfähigkeit einer Schweißnaht: Fw,Rd = 1039.23 kN/m
Bemessungsgröße: F_{Ed} = (F^2 + H^2)^{1/2} / (2 \cdot b_1) = 301.59 \text{ kN/m}, b_1 = 63.4 \text{ mm}
F_{Ed} = 301.59 \text{ kN/m} < F_{Rd} = 1039.23 \text{ kN/m} \Rightarrow U = 0.290 < 1 \text{ ok}
Schweißnähte am Steg
Tragfähigkeit einer Schweißnaht: Fw,Rd = 1039.23 kN/m
dreiseitiger Rippenanschluss:
Bemessungsgröße: F_{Ed} = F / (2 \cdot l_1) = 42.77 \text{ kN/m}, l_1 = 443.6 \text{ mm}
F_{Ed} = 42.77 \text{ kN/m} < F_{Rd} = 1039.23 \text{ kN/m} \Rightarrow U = 0.041 < 1 \text{ ok}
```

2.2.3.5.4. Nachweisergebnis

Maximale Ausnutzung: max U = 0.586 < 1 ok

2.3. Lasteinleitung in die Konsole (GZT)

Sonderprobleme nach Eurocode 3 EC 3-1-5 (10.19), NA: Deutschland

Voraussetzung: Flanschinduziertes Stegbeulen ist ausgeschlossen.

Voraussetzung: Platten-/Schubbeulen ist ausgeschlossen.

Voraussetzung: Quersteifen dienen als starre Lagerung des Blechfelds.

Voraussetzung: Lokales Beulen der Steifen ist ausgeschlossen.

2.3.1. Ergebnistabelle

Lk	Fz,Ed	V_{Ed}	Ur	U_{σ}	U
	kN	kN			
1	89.00	89.00	0.253	0.375	0.375*
2	61.50	61.50	0.175	0.259	0.259

 $F_{Z,Ed}; \ vertikale \ Einzellast \ aus \ einem \ Lastträger; \ V_{Ed}; \ Bemessungsgrößen \ im \ Querschnitt; \ U_r: \ Ausnutzung \ aus \ Rippen \ Ausnutzung \ Ausnutzung$

 U_{σ} : Ausnutzung aus Spannungen am Steganschnitt; U: Ausnutzung aus Lasteinleitung

*) maximale Ausnutzung

2.3.2. Endergebnis

Maximale Ausnutzung [Lk 1]: max U = 0.375 < 1 ok

2.3.3. Lk 1 (maßgebend)

Querschnittswerte: $A = 53.83 \text{ cm}^2$, $z_s = 95.0 \text{ mm}$, $l_y = 3692.20 \text{ cm}^4$, $y_s = 0.0 \text{ mm}$, $l_z = 1335.51 \text{ cm}^4$

Lasteinzugsbreite durch den Träger ss' = 2·tf + tw + 1.172·r = 47.6 mm

Lasteinzugslänge durch den Lastträger $s_s = 2 \cdot t_f + t_w + 1.172 \cdot r = 73.1 \text{ mm}$

Zur Info: Lagerpressung Fz,Ed,GZT/(Ss·Ss') = 25.58 N/mm²

wirksame Lasteinleitungslänge leff = ss + 2·tf = 93.1 mm

Länge der starren Lasteinleitung:

bezogen auf die Flanschaußenkante $s_s = l_{eff} - 2 \cdot t_f = 73.1 \text{ mm}$ / auf den Steganschnitt $s_w = l_{eff} + 2 \cdot r = 129.1 \text{ mm}$

2.3.3.1. Stegpressung (GZT)

zulässige Spannungen: $\sigma_{Rd} = f_y/\gamma_{M0} = 235.0 \text{ N/mm}^2$, $\tau_{Rd} = f_y/(3^{1/2}.\gamma_{M0}) = 135.7 \text{ N/mm}^2$

Lastübertragung durch Quersteifen (Rippen):

Kräfte je Rippe

 $F = 0.5 \cdot F_{c,Ed} \cdot (b_{f}-2 \cdot r-t_{w})/b_{f} = 35.04 \text{ kN}, H = F \cdot e_{F}/e_{H} = 12.75 \text{ kN}$

Steglastanteil Fc,Ed - 2·F = 18.91 kN

Voraussetzung: Steifen nicht beulgefährdet: Q-Klasse 2 ≤ 3 ok

Hinweis: b_R > 91.8 mm ⇒ Umschweißung nicht möglich, auf Korrosionsschutz achten !!

Querschnitt am Flansch

Drucktragfähigkeit N_{c,Rd} = (A·f_y) / γ_{M0} = 163.91 kN

Bemessungsgröße: $F_{Ed} = (F^2 + 3 \cdot H^2)^{1/2} = 41.43 \text{ kN}$

 $F_{Ed} = 41.43 \text{ kN} < F_{Rd} = 163.91 \text{ kN} \implies U = 0.253 < 1 \text{ ok}$

Querschnitt am Steg

Schubtragfähigkeit V_{Rd} = (A_V·f_y) / (3^{1/2}·γ_{M0}) = 157.39 kN

Bemessungsgröße: Fed = F = 35.04 kN

 $F_{Ed} = 35.04 \text{ kN} < F_{Rd} = 157.39 \text{ kN} \implies U = 0.223 < 1 \text{ ok}$

Schweißnähte am Flansch

Bemessungsgrößen: $FEd(\sigma_s) = F / (2 \cdot b_1) = 251.21 \text{ kN/m}, FEd(\tau_p) = H / (2 \cdot b_1) = 91.43 \text{ kN/m}, b_1 = 69.8 \text{ mm}$

 $\sigma_{1,w,Ed} = 59.39 \text{ N/mm}^2 < f_{1w,d} = 360.00 \text{ N/mm}^2 \Rightarrow U = 0.165 < 1 \text{ ok}$

 $\sigma_{2,w,Ed} = 50.24 \text{ N/mm}^2 < f_{2w,d} = 259.20 \text{ N/mm}^2 \Rightarrow U = 0.194 < 1 \text{ ok}$

Schweißnähte am Steg

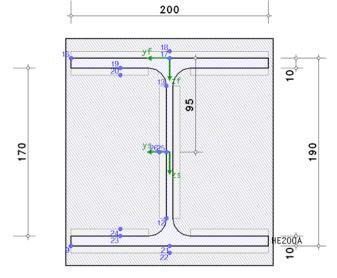
Bemessungsgröße: $F_{Ed}(\tau_p) = F / (2 \cdot I_1) = 151.05 \text{ kN/m}, I_1 = 116.0 \text{ mm}$ Nahtdicke a = 5.0 mm > a_{max} = 0.7 t_{min} = 4.5 mm (Schweisstechnik, s. DIN 18800) !! $\sigma_{1,w,Ed} = 52.33 \text{ N/mm}^2 < f_{1w,d} = 360.00 \text{ N/mm}^2 \Rightarrow U = 0.145 < 1 \text{ ok}$ Gesamt: Ausnutzung der Rippen UR = 0.253 < 1 ok

Einzellastpressung am Steganschnitt: reduzierte Querbelastung Fz,Ed = 18.9 kN lokale Spannungen σoz,Ed = -22.5 N/mm² $|\sigma_{oz,Ed}| = 22.5 \text{ N/mm}^2 < \sigma_{Rd} = 235.0 \text{ N/mm}^2 \Rightarrow U = 0.096 < 1 \text{ ok}$

Spannungen am Steganschnitt:

reduzierte Querbelastung Fz,Ed = 18.9 kN

 $Lk 1: V_{z,Ed} = 89.0 kN$


Spannungen Txz,Ed = 49.2 N/mm²

 $|\tau_{XZ,Ed}| = 49.2 \ N/mm^2 \ < \ \tau_{Rd} = 135.7 \ N/mm^2 \ \Rightarrow \ U = 0.363 \ < \ 1 \ \ ok$ $\sigma_V = 88.2 \ N/mm^2 < \ \sigma_{Rd} = 235.0 \ N/mm^2 \ \Rightarrow \ U = 0.375 \ < \ 1 \ ok$ Ausnutzung am Steganschnitt max $U_{\sigma} = 0.375 < 1$ ok

Maximale Ausnutzung: max U = 0.375 < 1 ok

2.4. Ermüdung der Verbindung Konsole-Stütze (GZE)

Sonderprobleme nach Eurocode 3 EC 3-1-9 (12.10), NA: Deutschland

Kerbfälle / zul. Kerbspannungen bei N = 2·10⁶ Schwingspielen:

Pkt	Уf	Zf	Δσx,Rd	Δau Rd	Δισz,Rd	Kerbpunkt	EC 3-1-9, Tab.
	mm	mm	N/mm^2	N/mm^2	N/mm²		
9	100.0	190.0	160.0	0.0	0.0	am Untergurt	8.1(2)
12	3.2	162.0	160.0	100.0	0.0	am Trägersteg	8.1(2) 8.1(6)
13	3.2	28.0	160.0	100.0	160.0	am Trägersteg	8.1(2) 8.1(6) 8.10(1)
16	100.0	0.0	160.0	0.0	0.0	am Obergurt	8.1(2)
° 17	0.0	0.0	36.0	0.0	0.0	am Blech (Obergurt)	8.5(3)
18	0.0	-7.1	80.0	0.0	0.0	am Blech (Obergurt)	8.5(1)
° 19	50.0	10.0	36.0	0.0	0.0	am Blech (Obergurt)	8.5(3)
20	50.0	17.1	80.0	0.0	0.0	am Blech (Obergurt)	8.5(1)
° 21	0.0	190.0	36.0	0.0	0.0	am Blech (Untergurt)	8.5(3)
22	0.0	197.1	80.0	0.0	0.0	am Blech (Untergurt)	8.5(1)
° 23	50.0	180.0	36.0	0.0	0.0	am Blech (Untergurt)	8.5(3)
24	50.0	172.9	80.0	0.0	0.0	am Blech (Untergurt)	8.5(1)
° 25	3.2	95.0	36.0	80.0	0.0	am Blech (Steg)	8.5(3) 8.5(8)
26	10.3	95.0	0.0	100.0	0.0	am Blech (Steg)	8.2(5)

^{°:} Nachweis der Schweißnaht

Belastung

Lk 1: $M_{y,Ed} = 0.00 \text{ kNm}, V_{z,Ed} = 0.00 \text{ kN}$ Lk 2: $M_{y,Ed} = -11.67 \text{ kNm}, V_{z,Ed} = 56.91 \text{ kN}$

2.4.1. Ermüdungsnachweis

Querschnittswerte: $A = 53.83 \text{ cm}^2$, $z_s = 95.0 \text{ mm}$, $l_y = 3692.20 \text{ cm}^4$, $y_s = 0.0 \text{ mm}$, $l_z = 1335.51 \text{ cm}^4$

elastische Spannungen / Spannungsschwingbreiten:

 $\Delta \sigma_{X,Ed} = \sigma_{X,max} \sigma_{X,min}, \quad \tau_{Ed} = \tau_{XZ,max} \tau_{XZ,min}$

Pkt. 21: $y_f = 0.0 \text{ mm}, z_f = 190.0 \text{ mm}$

Lk 1: $\sigma_X = 0.0 \text{ N/mm}^2$ 2: $\sigma_X = -38.1 \text{ N/mm}^2$ $\Delta \sigma_{X,Ed} = 38.1 \text{ N/mm}^2$

Spannungsschwingbreiten infolge Ermüdung:

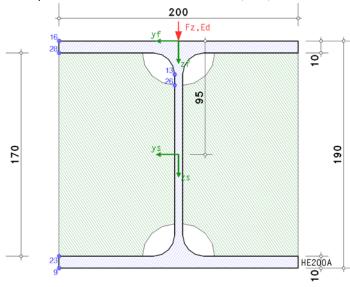
 $\Delta \sigma_{X,f} = \Delta \sigma_{X,Ed} \cdot \lambda_{\sigma}$, $\Delta \tau_f = \Delta \tau_{Ed} \cdot \lambda_{\tau}$

Pkt. 21: $y_f = 0.0 \text{ mm}, z_f = 190.0 \text{ mm}$ $\Delta \sigma_{x,f} = 12.0 \text{ N/mm}^2$

zul. Kerbspannungen:

 $\Delta \sigma_{X,Rd,f} = \Delta \sigma_{X,Rd}/\gamma Mf$, $\Delta \tau_{Rd,f} = \Delta \tau_{Rd}/\gamma Mf$

Pkt. 21: $y_f = 0.0 \text{ mm}$, $z_f = 190.0 \text{ mm}$ $\Delta \sigma_{x,Rd,f} = 31.3 \text{ N/mm}^2$


Nachweis der Kerbspannungen:

Pkt. 21: y = 0.0 mm, z = 190.0 mm $\Delta \sigma_{x,f} = 12.0 \text{ N/mm}^2 < \Delta \sigma_{x,Rd,f} = 31.3 \text{ N/mm}^2 \Rightarrow U_{\Delta\sigma x} = 0.384 \text{ ok}$

Ermüdungsnachweis [Pkt. 21]: max U = 0.384 < 1 ok

2.5. Ermüdung des Konsolprofils (GZE)

Sonderprobleme nach Eurocode 3 EC 3-1-9 (12.10), NA: Deutschland

Kerbfälle / zul. Kerbspannungen bei N = 2·10⁶ Schwingspielen:

Pkt	Уf	Zf	Δισx,Rd	∆τ Rd	Δ ι σz,Rd	Kerbpunkt	EC 3-1-9, Tab.
	mm	mm	N/mm²	N/mm^2	N/mm²		
9	100.0	190.0	160.0	0.0	0.0	am Untergurt	8.1(2)
13	3.2	28.0	160.0	100.0	160.0	am Trägersteg	8.1(2) 8.1(6) 8.10(1)
16	100.0	0.0	160.0	0.0	0.0	am Obergurt	8.1(2)
23	100.0	180.0	80.0	0.0	0.0	infolge Quersteife	8.4(7)
26	3.2	37.0	0.0	100.0	0.0	infolge Quersteife	8.1(6)
28	100.0	10.0	80.0	0.0	0.0	infolge Quersteife	8.4(7)

Belastung

Lk 1: $V_{z,Ed} = 0.00 \text{ kN}$ Lk 2: $V_{z,Ed} = 56.91 \text{ kN}$

Querbelastung auf dem Obergurt: vertikale Einzellast Fz,Ed = 56.9 kN

2.5.1. Ermüdungsnachweis

Querschnittswerte: $A = 53.83 \text{ cm}^2$, $z_s = 95.0 \text{ mm}$, $l_y = 3692.20 \text{ cm}^4$, $y_s = 0.0 \text{ mm}$, $l_z = 1335.51 \text{ cm}^4$

wirksame Lasteinleitungslänge leff = ss + 2·tf = 93.1 mm

wirksame Lasteinleitungslänge bezogen ...

... auf die Flanschaußenkante $s_s = l_{eff} - 2 \cdot t_f = 73.1 \text{ mm}$ / ... auf den Steganschnitt $s_w = l_{eff} + 2 \cdot r = 129.1 \text{ mm}$ lokale Spannungen ...

... am Trägersteg σ_{oz} = -67.8 N/mm², τ_{o} = 13.6 N/mm²

elastische Spannungen / Spannungsschwingbreiten:

 $\Delta\sigma_{X,Ed} = \sigma_{X,max} - \sigma_{X,min}, \quad \tau_{Ed} = \tau_{XZ,max} - \tau_{XZ,min} + 2 \cdot \tau_{o}, \quad \Delta\sigma_{Z,Ed} = -\sigma_{oZ}$

Pkt. 13: $y_f = 3.2 \text{ mm}, z_f = 28.0 \text{ mm}$ Lk 1: $\tau_{xz} = 0.0 \text{ N/mm}^2$

2: $\tau_{xz} = 47.2 \text{ N/mm}^2$

 $\Delta \tau Ed = 74.3 \text{ N/mm}^2$ $\Delta \sigma_{z,Ed} = 67.8 \text{ N/mm}^2$

Spannungsschwingbreiten infolge Ermüdung:

 $\Delta \sigma_{X,f} = \Delta \sigma_{X,Ed} \cdot \lambda_{\sigma}$, $\Delta \tau_f = \Delta \tau_{Ed} \cdot \lambda_{\tau}$, $\Delta \sigma_{Z,f} = \Delta \sigma_{Z,Ed} \cdot \lambda_{\sigma}$

Pkt. 13: $y_f = 3.2 \text{ mm}, z_f = 28.0 \text{ mm}$ $\Delta \tau_f = 37.2 \text{ N/mm}^2$ $\Delta \sigma_{z,f} = 21.4 \text{ N/mm}^2$

zul. Kerbspannungen:

 $\Delta \sigma_{X,Rd,f} = \Delta \sigma_{X,Rd}/\gamma_{Mf}$, $\Delta \tau_{Rd,f} = \Delta \tau_{Rd}/\gamma_{Mf}$, $\Delta \sigma_{Z,Rd,f} = \Delta \sigma_{Z,Rd}/\gamma_{Mf}$

Pkt. 13: $y_f = 3.2 \text{ mm}, z_f = 28.0 \text{ mm}$ $\Delta \tau Rd, f = 87.0 \text{ N/mm}^2$ $\Delta \sigma_{z,Rd,f} = 139.1 \text{ N/mm}^2$

Nachweis der Kerbspannungen:

Pkt. 13: y = 3.2 mm, z = 28.0 mm $\Delta \tau_f = 37.2 \text{ N/mm}^2 < \Delta \tau_{Rd,f} = 87.0 \text{ N/mm}^2$ \Rightarrow $U_{\Delta \tau} = 0.427$ ok

 $\Delta \sigma_{z,f} = 21.4 \text{ N/mm}^2 < \Delta \sigma_{z,Rd,f} = 139.1 \text{ N/mm}^2 \Rightarrow U_{\Delta \sigma z} = 0.154 \text{ ok}$

Ermüdungsnachweis [Pkt. 13]: max U = 0.427 < 1 ok

Endergebnis

Maximale Ausnutzung: max U = 0.586 < 1 ok

Anschluss an die Stütze

Nachweis erbracht

4. Vorschriften

EN 1990, Eurocode 0: Grundlagen der Tragwerksplanung; Deutsche Fassung EN 1990:2002 + A1:2005 + A1:2005/AC:2010, Ausgabe Dezember 2010

EN 1990/NA, Nationaler Anhang zur EN 1990, Ausgabe Dezember 2010

EN 1993-1-1, Eurocode 3: Bemessung und Konstruktion von Stahlbauten -

Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau;

Deutsche Fassung EN 1993-1-1:2005 + AC:2009, Ausgabe Dezember 2010

EN 1993-1-1/A1, Ergänzungen zur EN 1993-1-1, Ausgabe Juli 2014

EN 1993-1-1/NA, Nationaler Anhang zur EN 1993-1-1, Ausgabe Dezember 2018

EN 1993-1-8, Eurocode 3: Bemessung und Konstruktion von Stahlbauten -

Teil 1-8: Bemessung von Anschlüssen;

Deutsche Fassung EN 1993-1-8:2005 + AC:2009, Ausgabe Dezember 2010

EN 1993-1-8/NA, Nationaler Anhang zur EN 1993-1-8, Ausgabe Dezember 2010

EN 1993-1-5, Eurocode 3: Bemessung und Konstruktion von Stahlbauten - Teil 1-5: Plattenförmige Bauteile;

Deutsche Fassung EN 1993-1-5:2006 + AC:2009 + A1:2017 + A2:2019, Ausgabe Oktober 2019

EN 1993-1-5/NA, Nationaler Anhang zur EN 1993-1-5, Ausgabe Dezember 2010

EN 1993-1-9, Eurocode 3: Bemessung und Konstruktion von Stahlbauten - Teil 1-9: Ermüdung;

Deutsche Fassung EN 1993-1-9:2006 + AC:2009, Ausgabe Dezember 2010

EN 1993-1-9/NA, Nationaler Anhang zur EN 1993-1-9, Ausgabe Dezember 2010