

Konsole EC 3-1-8 (12.10), NA: Deutschland

Eingabeprotokoll

4H-EC3SK Version: 6/2025-1b

Details (Schnitt A - A)

Stahlsorte

Stahlgüte S235

Parameter der Stütze

Profil HE240B

Verstärkung des Profils durch Quersteifen (Stegsteifen in Höhe von Trägerzug- und -druckflansch, det = 199.0 mm):

Dicke $t_{st} = 12.0 \text{ mm}$, Breite $b_{st} = 115.0 \text{ mm}$, Länge $l_{st} = 206.0 \text{ mm}$

Aussparung an den Steifen cst = 31.5 mm

Schweißnähte ast,f = 4.0 mm, ast,w = 4.0 mm

Parameter des Trägers

Profil HE220A

Verstärkung des Profils durch Quersteifen:

Dicke $t_{st} = 15.0 \text{ mm}$, Breite $b_{st} = 106.5 \text{ mm}$, Länge $l_{st} = 188.0 \text{ mm}$

Aussparung an den Steifen cst = 27.0 mm

Schweißnähte ast,f = 4.0 mm, ast,w = 4.0 mm

Schrauben

Festigkeitsklasse 10.9, Schraubengröße M20

große Schlüsselweite (HV-Schraube), vorgespannt (zur Info: Regelvorspannkraft Fp,c* = 0.7·fyb·As = 154.3 kN) Schaft in der Scherfuge

Schweißnähte

Trägerflansch oben: Kehlnaht, Nahtdicke a = 5.0 mm

Trägersteg: Kehlnaht, Nahtdicke a = 4.0 mm

Trägerflansch unten: Kehlnaht, Nahtdicke a = 4.0 mm

75% der Druckspannung wird über Kontakt abgetragen

Parameter der Verbindung

geschraubter Stirnblechanschluss

Stirnblech Dicke tp = 20.0 mm, Breite bp = 230.0 mm, Länge lp = 300.0 mm

Überstände $h_{p,o} = 70.0 \text{ mm}, h_{p,u} = 20.0 \text{ mm}$

Schrauben:

3 Schraubenreihen mit je 2 Schrauben

Achsabstand der Schrauben zum seitlichen Rand des Stirnblechs e2 = 50.0 mm

Achsabstand der ersten Schraubenreihe zum oberen Rand des Stirnblechs (Endreihe) eo = 40.0 mm

Achsabstand der letzten Schraubenreihe zum unteren Rand des Stirnblechs (Endreihe) eu = 70.0 mm

Achsabstand der Schraubenreihen voneinander p₁₋₂ = 80.0 mm, p₂₋₃ = 110.0 mm

Abstand der Querbelastung ∆a = 240.0 mm

Nachweis der Lasteinleitung:

Querbelastung auf dem Obergurt der Konsole aus einem Lastträger (Trägerkreuzung) Profil HE200B Nachweis der Ermüdung:

Schadensäguivalenzfaktoren $\lambda_{\sigma} = 1.000$, $\lambda_{\tau} = 1.000$

Ermittlung der Tragfähigkeiten

Nachweis der Konsole-Stützenverbindung, Grenzzustand der Tragfähigkeit (GZT)

Nachweis der Lasteinleitung, Trägerkreuzung, Grenzzustand der Tragfähigkeit (GZT)

Ermüdungsnachweise der Verbindung sowie des Konsolprofils, Grenzzustand der Ermüdung (GZE)

Konsolbelastung und Schnittgrößen im Schnittpunkt der Systemachsen (GZT)

Lk	F2,Ed	H2,Ed		
	kN	kΝ		
1	150.00	50.00		

F2,Ed,H2,Ed: Belastung der Konsole

Konsolbelastung (GZE)

Lk	F2,Ed	H2,Ed
	kN	kΝ
1	80.00	
2	110.00	40.00

F_{2,Ed},H_{2,Ed}: Belastung der Konsole

Materialsicherheitsbeiwerte (GZT)

Beanspruchbarkeit von Querschnitten $\gamma_{M0} = 1.00$

Beanspruchbarkeit von Bauteilen bei Stabilitätsversagen γ_{M1} = 1.10

Beanspruchbarkeit von Schrauben, Schweißnähten, Blechen auf Lochleibung γM2 = 1.25

Materialsicherheitsbeiwert (GZE)

Bemessungskonzept: Schadenstoleranz, Schadensfolgen: hoch ⇒ Ermüdungsfestigkeit γMf = 1.15

Nachweise

2.1. Ergebnistabelle (GZT)

2.1.1. Ausnutzungen

	Uj		Uj,b	Uj,σ	Uj,τ	Uj,w	Uj,r	U1,σ	U1,r	U
			= = =					= = =		
1	0.829	0.551	0.829	0.301	0.593	0.625	0.393	0.551	0.366	0.829*

U_i; res. Ausnutzung aus Träger-Stütze-Anschluss; U_i; res. Ausnutzung aus Lasteinleitung; U_{i.b}; Querschnittsausnutzung Träger

Ui,ց: Ausnutzung aus Biegung; Ui,։: Ausnutzung aus Querkraft; Ui,թ։ Ausnutzung aus Schweißnaht

Uj,r: Ausnutzung aus Steifen/Rippen; Ul,o: Ausnutzung aus Spannungen am Steganschnitt; Ul,r: Ausnutzung aus Rippen

U: Ausnutzung der Verbindung

2.2. Anschluss an die Stütze (GZT)

Biegesteifer Trägeranschluss EC 3-1-8 (12.10), NA: Deutschland

Hinweis

Der Nachweis der Verbindung nach EC 3-1-8 erfolgt ohne Berücksichtigung der Vorspannkräfte.

Verbindungen können jedoch mit vorgespannten HV-Schrauben ausgeführt werden.

Datencheck

ok

Schraubenabstände am Stirnblech

horizontal: $e_2 = 50.0 \text{ mm} > 1.2 \cdot d_0 = 26.4 \text{ mm}$, $e_2 = 50.0 \text{ mm} < 4.t + 40 \text{ mm} = 108.0 \text{ mm}$ horizontal: $p_2 = 130.0 \text{ mm} > 2.4 \cdot d_0 = 52.8 \text{ mm}$, $p_2 = 130.0 \text{ mm} < \min(14.t, 200 \text{ mm}) = 200.0 \text{ mm}$ oben-unten: $e_1 = 40.0 \text{ mm} > 1.2 \cdot d_0 = 26.4 \text{ mm}$, $e_1 = 40.0 \ mm < 4 \cdot t + 40 \ mm = 108.0 \ mm$ oben-unten: $p_1 = 80.0 \text{ mm} > 2.2 \cdot d_0 = 48.4 \text{ mm}$, $p_1 = 80.0 \text{ mm} < \min(14 \cdot t, 200 \text{ mm}) = 200.0 \text{ mm}$ oben-unten: $p_1 = 110.0 \text{ mm} > 2.2 \cdot d_0 = 48.4 \text{ mm}$, $p_1 = 110.0 \text{ mm} < \min(14 \cdot t, 200 \text{ mm}) = 200.0 \text{ mm}$ oben-unten: $e_1 = 70.0 \text{ mm} > 1.2 \cdot d_0 = 26.4 \text{ mm}$, $e_1 = 70.0 \text{ mm} < 4.t + 40 \text{ mm} = 108.0 \text{ mm}$ Schraubenabstand vom Stützenrand horizontal: $e_2 = 55.0 \text{ mm} > 1.2 \cdot d_0 = 26.4 \text{ mm},$ $e_2 = 55.0 \text{ mm} < 4.t + 40 \text{ mm} = 108.0 \text{ mm}$

^{*)} maximale Ausnutzung

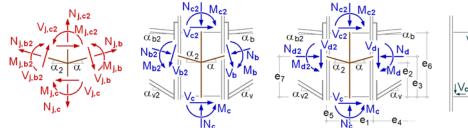
2.2.1. Ergebnistabelle

Ausnutzuna

Lk	U _o ,b	U_{m}	Uv	U_{wp}	U_{ep}	U_{sb}	Uss	U
				= = =		= = =		= = =
1	0.829	0.301	0.183	0.380	0.593	0.625	0.393	0.829*

 $U_{\sigma,b}$: Spannungsausnutzung am Träger; U_m : Ausnutzung aus Biegung; U_v : Ausnutzung aus Abscheren/Lochleibung U_{wp} : Ausnutzung aus Schub im Stützensteg; U_{ep} : Ausnutzung aus Schub im Stirnblech; U_{sb} : Ausnutzung aus Schweißnaht U_{ss} : Ausnutzung aus Steifen/Rippen; U: Ausnutzung der Verbindung *) maximale Ausnutzung

2.2.2. Endergebnis


Maximale Ausnutzung: max U = 0.829 < 1 ok

2.2.3. Lk 1 (maßgebend)

2.2.3.1. Bemessungsgrößen

Knotenschnittgrößen Anschnitt Anschluss ⊥ zur Anschlussebene

Teilschnittgrößen

Neigungswinkel: $\alpha_b = \alpha = \alpha_v = 0^\circ$

Abstände: $e_1 = 120.0 \text{ mm}$, $e_3 = 99.5 \text{ mm}$, $e_2 = 99.5 \text{ mm}$, $e_6 = 199.0 \text{ mm}$

Schnittgrößen senkrecht zu den Anschlussebenen

Anschnitt Träger

 $N_d = 50.00 \text{ kN}, M_d = 33.75 \text{ kNm}, V_d = 150.00 \text{ kN}$

Teilschnittgrößen

Schnittgrößen im Anschnitt Stirnblech-Träger: $M'_d = M_d - V_{d} \cdot t_p = 30.75 \text{ kNm}$ $N_{b,t} = -N_d \cdot z_{bu}/z_b + M'_d/z_b = 129.52 \text{ kN}, \ z_b = 199.0 \text{ mm}, \ z_{bu} = 99.5 \text{ mm}$

 $N_{b,c} = N_{d} \cdot z_{bo}/z_b + M'_{d}/z_b = 179.52 \text{ kN}, z_b = 199.0 \text{ mm}, z_{bo} = 99.5 \text{ mm}$

 $V_{b,t} = -N_{b,t} \cdot \sin(\alpha_b) = 0.00 \text{ kN}, \ V_{b,c} = N_{b,c} \cdot \sin(\alpha_v) = 0.00 \text{ kN}, \ V_{b,w} = V_d - V_{b,t} - V_{b,c} = 150.00 \text{ kN}$

2.2.3.2. Querschnittstragfähigkeit im Anschnitt

elastischer Spannungsnachweis für N = -50.00 kN, My = -30.75 kNm, Vz = 150.00 kN Nachweis: σ_V = 194.83 N/mm² < $\sigma_{V,Rd}$ = 235.00 N/mm² \Rightarrow U $_{\sigma}$ = 0.829 < 1 ok c/t-Verhältnis: einseitig gestützt: Ausnutzung U $_{c/t}$ = 0.306 < 1 ok

beidseitig gestützt: Ausnutzung Uc/t = 0.106 < 1 ok

2.2.3.3. Anschlusstragfähigkeit

Übertragungsparameter: βi = 1.00

2.2.3.3.1. Biegetragfähigkeit

Abstand der Zug-Schraubenreihen vom Druckpunkt: h₁ = 234.5 mm, h₂ = 154.5 mm, h₃ = 44.5 mm

Tragfähigkeit je Schraubenreihe (Zug)

Reihe 1: F_{tr,Rd} = 292.7 kN Reihe 2: F_{tr,Rd} = 292.5 kN

Reihe 3: F_{tr,Rd} = 244.6 kN

 $\Sigma F_{tr,Rd}^* = 829.8 \text{ kN}$

Tragfähigkeit je Schraubenreihe (Biegung)

Reihe 1: $F_{tr,Rd} = 292.7 \text{ kN}$

Reihe 2: Ftr, Rd = 173.5 kN

Reihe 3: $F_{tr,Rd} = 0.0 \text{ kN}$

 Σ Ftr,Rd = 466.2 kN

Mögliches Versagen durch Grundkomponente 1, 4, 5

Tragfähigkeit der Flansche

 $\Sigma F_{c,Rd}^* = 932.5 \text{ kN}$

Biegetragfähigkeit

 $M_{j,Rd} = \Sigma(F_{tr,Rd} \cdot h_r) = 95.5 \text{ kNm}$

Zugtragfähigkeit

 $N_{i,t,Rd} = \Sigma F_{tr,Rd}^* = 829.8 \text{ kN}$

Drucktragfähigkeit

 $N_{i,c,Rd} = \Sigma F_{c,Rd}^* = 932.5 \text{ kN}$

2.2.3.3.2. Abscher-/Lochleibungstragfähigkeit

Tragfähigkeit je Schraubenreihe

Reihe 1: $F_{Vr,Rd} = 122.8 \text{ kN}$ Reihe 2: $F_{Vr,Rd} = 195.7 \text{ kN}$ Reihe 3: $F_{Vr,Rd} = 301.6 \text{ kN}$

 $\Sigma F_{vr,Rd} = 620.1 \text{ kN}$

Abscher-/Lochleibungstragfähigkeit

 $V_{i,Rd} = \Sigma F_{vr,Rd} = 620.1 \text{ kN}$

2.2.3.3.3. Schubtragfähigkeit

Schubtragfähigkeit des Stirnblechs

Stirnblech: $V_{ep,Rd} = 412.46 \text{ kN}$ Schweißnähte: $F_{w,Rd} = 252.74 \text{ kN}$

Schubtragfähigkeit des Stirnblechs: Vep,Rd = Fw,Rd = 252.74 kN

Schubtragfähigkeit des Stützenstegs

 $V_{wp,Rd} = 466.2 \text{ kN}$

2.2.3.3.4. Gesamt

 $M_{j,Rd} = 95.5 \text{ kNm} \quad N_{j,t,Rd} = 829.8 \text{ kN} \quad N_{j,c,Rd} = 932.5 \text{ kN} \quad V_{j,Rd} = 620.1 \text{ kN} \quad V_{wp,Rd} = 466.2 \text{ kN} \quad V_{ep,Rd} = 252.7 \text$

2.2.3.4. Nachweise

2.2.3.4.1. Nachweis der Anschlusstragfähigkeit mit der Komponentenmethode

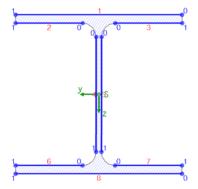
Normalkraft: N_{b,Ed} = |N_d| = 50.00 kN < 5%·N_{pl,Rd} = 75.60 kN ⇒ Biegetragfähigkeit

Biegemoment: $MEd = Md - Nd \cdot Zbu = 28.77 \text{ kNm}, Zbu = 99.5 \text{ mm}$

Querkraft: $V_{Ed} = |V_d| = 150.00 \text{ kN}$

Schubkraft: $V_{c,w,Ed} = M_d/z - (V_{c1}-V_{c2})/2 = 177.02 \text{ kN}, z = 190.7 \text{ mm}$

Schubkraft: V_{b,w,Ed} = 150.00 kN


2.2.3.4.2. Nachweis der Schweißnähte am Trägerprofil

Naht 1: Trägerflansch mit Zug außen

Naht 8: Trägerflansch mit Druck außen Berechnungsquerschnitt:

Nähte 2,3: Trägerflansch mit Zug innen Nähte 4,5: Trägersteg beidseitig

Nähte 6,7: Trägerflansch mit Druck innen

Naht 1: a_w = 5.0 mm | l_w = 220.0 mm Naht 2: a_w = 5.0 mm | l_w = 88.5 mm

Naht 3: siehe Naht 2

Naht 4: $a_W = 4.0 \text{ mm}$ $l_W = 152.0 \text{ mm}$

Naht 5: siehe Naht 4

Naht 6: $a_W = 4.0 \text{ mm}$ $l_W = 88.5 \text{ mm}$

Naht 7: siehe Naht 6

Naht 8: $a_W = 4.0 \text{ mm}$ $l_W = 220.0 \text{ mm}$

Bemessungsgrößen bezogen auf den Schwerpunkt des Profils:

 $N_{Ed} = -50.00 \text{ kN}, M_{y,Ed} = -33.75 \text{ kNm}, V_{z,Ed} = 150.00 \text{ kN}$

Querschnittswerte bezogen auf den Schwerpunkt des Linienquerschnitts:

 $\Sigma A_w = 47.89 \text{ cm}^2$, $A_{w,z} = 12.16 \text{ cm}^2$, $\Sigma I_w = 109.8 \text{ cm}$

 $I_{w,y} = 3791.67 \text{ cm}^4$, $I_{w,z} = 1592.73 \text{ cm}^4$, $\Delta z_w = -8.3 \text{ mm}$

Nachweise in den Endpunkten der Nähte:

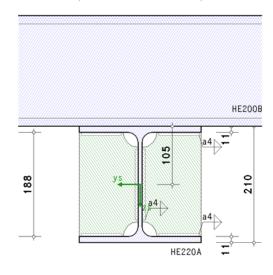
75% Spannungsabtrag über Druckkontakt

Naht 1, Pkt. 0: $\sigma_{W,x} = 75.63 \text{ N/mm}^2$ $\Rightarrow U_W = 0.297 < 1 \text{ ok}$

```
\Rightarrow U<sub>w</sub> = 0.259 < 1 ok
Naht 2.
               Pkt. 0: \sigma_{w,x} = 65.84 \text{ N/mm}^2
               Pkt. 0: \sigma_{w,x} = 49.82 \text{ N/mm}^2
                                                                  \tau_{W,z} = 123.36 \text{ N/mm}^2
                                                                                                       \Rightarrow U<sub>w</sub> = 0.625 < 1 ok
Naht 4,
               Pkt. 1: \sigma_{w,x} = -21.37 \text{ N/mm}^2
                                                                  \tau_{W,z} = 123.36 \text{ N/mm}^2
                                                                                                       \Rightarrow U<sub>w</sub> = 0.599 < 1 ok
Naht 6.
               Pkt. 0: \sigma_{w,x} = -25.37 \text{ N/mm}^2
                                                                                                       \Rightarrow U<sub>w</sub> = 0.100 < 1 ok
Naht 8.
               Pkt. 0: \sigma_{W,X} = -27.82 \text{ N/mm}^2
                                                                                                        \Rightarrow U<sub>w</sub> = 0.109 < 1 ok
Ergebnis:
Naht 4,
              Pkt. 0: \sigma_{w,x} = 49.82 \text{ N/mm}^2
                                                                  \tau_{W,z} = 123.36 \text{ N/mm}^2
Max:
               \sigma_{1,w,Ed} = 224.98 \text{ N/mm}^2 < f_{1w,d} = 360.00 \text{ N/mm}^2
               \sigma_{2,w,Ed} = 35.23 \text{ N/mm}^2 < f_{2w,d} = 259.20 \text{ N/mm}^2 \Rightarrow U_w = 0.625 < 1 \text{ ok}
```

```
2.2.3.4.3. Nachweis der Stegsteifen
Drucksteife (unten)
F_{c,Ed} = 200.93 \text{ kN}
Kräfte je Rippe
F = 0.5 \cdot F_{c,Ed} \cdot (b_f - 2 \cdot r - t_w)/b_f = 78.70 \text{ kN}, H = F \cdot e_F/e_H = 27.98 \text{ kN}
Voraussetzung: Steifen nicht beulgefährdet: Q-Klasse 2 ≤ 3 ok
Querschnitt am Flansch
Drucktragfähigkeit N<sub>c,Rd</sub> = (A·f<sub>y</sub>) / γ<sub>M0</sub> = 235.47 kN
Bemessungsgröße: F_{Ed} = (F^2 + 3 \cdot H^2)^{1/2} = 92.42 \text{ kN}
F_{Ed} = 92.42 \text{ kN} < F_{Rd} = 235.47 \text{ kN} \implies U = 0.393 < 1 \text{ ok}
Querschnitt am Steg
Schubtragfähigkeit V_{Rd} = (A_v \cdot f_y) / (3^{1/2} \cdot \gamma_{M0}) = 232.82 \text{ kN}
Bemessungsgröße: FEd = F = 78.70 kN
F_{Ed} = 78.70 \text{ kN} < F_{Rd} = 232.82 \text{ kN} \implies U = 0.338 < 1 \text{ ok}
Schweißnähte am Flansch
Bemessungsgrößen: F_{Ed}(\sigma_s) = F / (2 \cdot b_1) = 471.23 \text{ kN/m}, F_{Ed}(\tau_p) = H / (2 \cdot b_1) = 167.56 \text{ kN/m}, b_1 = 83.5 \text{ mm}
75% Spannungsabtrag über Druckkontakt
\sigma_{1,w,Ed} = 34.59 \text{ N/mm}^2 < f_{1w,d} = 360.00 \text{ N/mm}^2 \Rightarrow U = 0.096 < 1 \text{ ok}
\sigma_{2,w,Ed} = 29.45 \text{ N/mm}^2 < f_{2w,d} = 259.20 \text{ N/mm}^2 \Rightarrow U = 0.114 < 1 \text{ ok}
Schweißnähte am Steg
Bemessungsgröße: F_{Ed}(\tau_p) = F / (2 \cdot l_1) = 275.16 \text{ kN/m}, l_1 = 143.0 \text{ mm}
75% Spannungsabtrag über Druckkontakt
\sigma_{1,w,Ed} = 29.79 \text{ N/mm}^2 < f_{1w,d} = 360.00 \text{ N/mm}^2 \Rightarrow U = 0.083 < 1 \text{ ok}
Zugsteife (oben)
F_{t,Ed} = 150.93 \text{ kN}
Kräfte je Rippe
F = 0.5 \cdot F_{t,Ed} \cdot (b_{f}-2 \cdot r - t_{w})/b_{f} = 59.11 \text{ kN}, H = F \cdot e_{F}/e_{H} = 21.02 \text{ kN}
Querschnitt am Flansch
Zugtragfähigkeit Nt,Rd = 235.47 kN
Bemessungsgröße: F_{Ed} = (F^2 + 3 \cdot H^2)^{1/2} = 69.42 \text{ kN}
F_{Ed} = 69.42 \text{ kN} < F_{Rd} = 235.47 \text{ kN} \implies U = 0.295 < 1 \text{ ok}
Querschnitt am Steg
Schubtragfähigkeit V_{Rd} = (A_v \cdot f_v) / (3^{1/2} \cdot \gamma_{M0}) = 232.82 \text{ kN}
Bemessungsgröße: FEd = F = 59.11 kN
F_{Ed} = 59.11 \text{ kN} < F_{Rd} = 232.82 \text{ kN} \implies U = 0.254 < 1 \text{ ok}
Schweißnähte am Flansch
Bemessungsgrößen: F_{Ed}(\sigma_s) = F / (2 \cdot b_1) = 353.97 \text{ kN/m}, F_{Ed}(\tau_p) = H / (2 \cdot b_1) = 125.87 \text{ kN/m}, b_1 = 83.5 \text{ mm}
\sigma_{1,w,Ed} = 103.93 \text{ N/mm}^2 < f_{1w,d} = 360.00 \text{ N/mm}^2 \Rightarrow U = 0.289 < 1 \text{ ok}
\sigma_{2,w,Ed} = 88.49 \text{ N/mm}^2 < f_{2w,d} = 259.20 \text{ N/mm}^2 \implies U = 0.341 < 1 \text{ ok}
Schweißnähte am Steg
Bemessungsgröße: F_{Ed}(\tau_p) = F / (2 \cdot l_1) = 206.69 \text{ kN/m}, l_1 = 143.0 \text{ mm}
```

2.2.3.4.4. Nachweisergebnis


Maximale Ausnutzung: max U = 0.829 < 1 ok

2.3. Lasteinleitung in die Konsole (GZT)

Sonderprobleme nach Eurocode 3 EC 3-1-5 (10.19), NA: Deutschland

 $\sigma_{1,w,Ed} = 89.50 \text{ N/mm}^2 < f_{1w,d} = 360.00 \text{ N/mm}^2 \implies U = 0.249 < 1 \text{ ok}$

Voraussetzung: Flanschinduziertes Stegbeulen ist ausgeschlossen.

Voraussetzung: Platten-/Schubbeulen ist ausgeschlossen.

Voraussetzung: Quersteifen dienen als starre Lagerung des Blechfelds.

Voraussetzung: Lokales Beulen der Steifen ist ausgeschlossen.

2.3.1. Ergebnistabelle

Lk	Fz,Ed	NEd	MEd	V Ed	Ur	Uσ	U
	kN	kΝ	kNm	kΝ			
1	150.00	-50.00	5.25	150.00	0.366	0.551	0.551*

 $F_{z,Ed}$: vertikale Einzellast aus einem Lastträger; N_{Ed}, M_{Ed}, V_{Ed} : Bemessungsgrößen im Querschnitt; U_r : Ausnutzung aus Rippen U_σ : Ausnutzung aus Spannungen am Steganschnitt; U: Ausnutzung aus Lasteinleitung *) maximale Ausnutzung

2.3.2. Endergebnis

Maximale Ausnutzung [Lk 1]: max U = 0.551 < 1 ok

2.3.3. Lk 1 (maßgebend)

Querschnittswerte: $A = 64.34 \text{ cm}^2$, $z_s = 105.0 \text{ mm}$, $l_v = 5409.75 \text{ cm}^4$, $y_s = 0.0 \text{ mm}$, $l_z = 1954.56 \text{ cm}^4$

Lasteinzugsbreite durch den Träger ss' = 2·tf + tw + 1.172·r = 50.1 mm

Lasteinzugslänge durch den Lastträger $s_s = 2 \cdot t_f + t_W + 1.172 \cdot r = 60.1 \text{ mm}$

Zur Info: Lagerpressung Fz,Ed,GZT/(Ss·Ss') = 49.84 N/mm²

wirksame Lasteinleitungslänge $l_{eff} = s_s + 2 \cdot t_f = 82.1 \text{ mm}$

Länge der starren Lasteinleitung:

bezogen auf die Flanschaußenkante ss = leff - 2·ff = 60.1 mm / auf den Steganschnitt sw = leff + 2·r = 118.1 mm

2.3.3.1. Stegpressung (GZT)

zulässige Spannungen: $\sigma_{Rd} = f_V/\gamma_{M0} = 235.0 \text{ N/mm}^2$, $\tau_{Rd} = f_V/(3^{1/2}.\gamma_{M0}) = 135.7 \text{ N/mm}^2$

Lastübertragung durch Quersteifen (Rippen):

Kräfte je Rippe

 $F = 0.5 \cdot F_{c,Ed} \cdot (b_f - 2 \cdot r - t_w)/b_f = 60.34 \text{ kN}, H = F \cdot e_F/e_H = 21.42 \text{ kN}$

Steglastanteil Fc,Ed - 2·F = 29.32 kN

Voraussetzung: Steifen nicht beulgefährdet: Q-Klasse 1 ≤ 3 ok

Hinweis: b_R > 102.5 mm ⇒ Umschweißung nicht möglich, auf Korrosionsschutz achten !!

Querschnitt am Flansch

Drucktragfähigkeit N_{c,Rd} = (A·f_y) / γ_{M0} = 280.24 kN

Bemessungsgröße: $F_{Ed} = (F^2 + 3 \cdot H^2)^{1/2} = 70.84 \text{ kN}$

 $F_{Ed} = 70.84 \text{ kN} < F_{Rd} = 280.24 \text{ kN} \implies U = 0.253 < 1 \text{ ok}$

Querschnitt am Steg

Schubtragfähigkeit V_{Rd} = (A_V·f_y) / (3^{1/2}·γ_{M0}) = 272.71 kN

Bemessungsgröße: FEd = F = 60.34 kN

 $F_{Ed} = 60.34 \text{ kN} < F_{Rd} = 272.71 \text{ kN} \implies U = 0.221 < 1 \text{ ok}$

Schweißnähte am Flansch

Bemessungsgrößen: $F_{Ed}(\sigma_s) = F / (2 \cdot b_1) = 379.50 \text{ kN/m}, F_{Ed}(\tau_p) = H / (2 \cdot b_1) = 134.74 \text{ kN/m}, b_1 = 79.5 \text{ mm}$

 $\sigma_{1,w,Ed} = 111.38 \text{ N/mm}^2 < f_{1w,d} = 360.00 \text{ N/mm}^2 \Rightarrow U = 0.309 < 1 \text{ ok}$

 $\sigma_{2,w,Ed} = 94.88 \text{ N/mm}^2 < f_{2w,d} = 259.20 \text{ N/mm}^2 \implies U = 0.366 < 1 \text{ ok}$

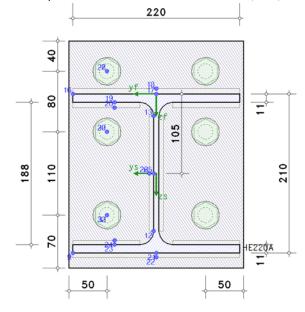
Schweißnähte am Steg

Bemessungsgröße: $F_{Ed}(\tau_p) = F / (2 \cdot l_1) = 225.15 \text{ kN/m}, l_1 = 134.0 \text{ mm}$

 $\sigma_{1,w,Ed} = 97.49 \text{ N/mm}^2 < f_{1w,d} = 360.00 \text{ N/mm}^2 \Rightarrow U = 0.271 < 1 \text{ ok}$ Gesamt: Ausnutzung der Rippen UR = 0.366 < 1 ok

Einzellastpressung am Steganschnitt: reduzierte Querbelastung Fz, Ed = 29.3 kN lokale Spannungen σoz,Ed = -35.5 N/mm² $|\sigma_{oz,Ed}| = 35.5 \text{ N/mm}^2 < \sigma_{Rd} = 235.0 \text{ N/mm}^2 \Rightarrow U = 0.151 < 1 \text{ ok}$

Spannungen am Steganschnitt:


reduzierte Querbelastung Fz, Ed = 29.3 kN

Lk 1: Ned = -50.0 kN, $M_{y,Ed}$ = 5.3 kNm, $V_{z,Ed}$ = 150.0 kN Spannungen $\sigma_{x,Ed} = -15.1 \text{ N/mm}^2$, $\tau_{xz,Ed} = 72.6 \text{ N/mm}^2$ $|\sigma_{\text{X,Ed}}| = 15.1 \text{ N/mm}^2 \ < \ \sigma_{\text{Rd}} = 235.0 \text{ N/mm}^2 \ \Rightarrow \ U = 0.064 \ < \ 1 \text{ ok}$ $|\tau_{XZ,Ed}| = 72.6 \ N/mm^2 \ < \ \tau_{Rd} = 135.7 \ N/mm^2 \ \Rightarrow \ U = 0.535 \ < \ 1 \ \ ok$ $\sigma_V = 129.4 \ N/mm^2 \ < \ \sigma_{Rd} = 235.0 \ N/mm^2 \ \Rightarrow \ U = 0.551 \ < \ 1 \ ok$ Ausnutzung am Steganschnitt max $U_{\sigma} = 0.551 < 1$ ok

Maximale Ausnutzung: max U = 0.551 < 1 ok

2.4. Ermüdung der Verbindung Konsole-Stütze (GZE)

Sonderprobleme nach Eurocode 3 EC 3-1-9 (12.10), NA: Deutschland

Kerbfälle / zul. Kerbspannungen bei N = 2·10⁶ Schwingspielen:

Pkt	y f	Zf	∆ox,Rd	Δτ Rd	Δσz,Rd	Kerbpunkt	EC 3-1-9, Tab.
	mm	mm	N/mm²	N/mm²	N/mm²		
9	110.0	210.0	160.0	0.0	0.0	am Untergurt	8.1(2)
12	3.5	181.0	160.0	100.0	0.0	am Trägersteg	8.1(2) 8.1(6)
13	3.5	29.0	160.0	100.0	160.0	am Trägersteg	8.1(2) 8.1(6) 8.10(1)
16	110.0	0.0	160.0	0.0	0.0	am Obergurt	8.1(2)
° 17	0.0	0.0	36.0	0.0	0.0	am Blech (Obergurt)	8.5(3)
18	0.0	-7.1	80.0	0.0	0.0	am Blech (Obergurt)	8.5(1)
° 19	55.0	11.0	36.0	0.0	0.0	am Blech (Obergurt)	8.5(3)
20	55.0	18.1	80.0	0.0	0.0	am Blech (Obergurt)	8.5(1)
° 21	0.0	210.0	36.0	0.0	0.0	am Blech (Untergurt)	8.5(3)
22	0.0	215.7	80.0	0.0	0.0	am Blech (Untergurt)	8.5(1)
° 23	55.0	199.0	36.0	0.0	0.0	am Blech (Untergurt)	
24	55.0	193.3	80.0	0.0	0.0	am Blech (Untergurt)	8.5(1)
° 25	3.5	105.0	36.0	80.0	0.0	am Blech (Steg)	8.5(3) 8.5(8)
26	9.2	105.0	0.0	100.0	0.0	am Blech (Steg)	8.2(5)
x 27	65.0	-30.0	50.0	100.0	0.0	am Blech	8.1(14) 8.1(15)
28	65.0	-30.0	90.0	0.0	0.0	am Blech	8.1(10)
x 29	65.0	50.0	50.0	100.0	0.0	am Blech	8.1(14) 8.1(15)
30	65.0	50.0	90.0	0.0	0.0	am Blech	8.1(10)
x 31	65.0	160.0	50.0	100.0	0.0	am Blech	8.1(14) 8.1(15)
32	65.0	160.0	90.0	0.0	0.0	am Blech	8.1(10)

^{°:} Nachweis der Schweißnaht, x: Nachweis der Schraube

Belastung

Lk 1: $N_{Ed} = -0.00 \text{ kN}, M_{y,Ed} = -20.80 \text{ kNm}, V_{z,Ed} = 80.00 \text{ kN}$ Lk 2: $N_{Ed} = -40.00 \text{ kN}, M_{y,Ed} = -24.40 \text{ kNm}, V_{z,Ed} = 110.00 \text{ kN}$

2.4.1. Ermüdungsnachweis

Schraubenabstände am Stirnblech:

horizontal: $e_2 = 50.0 \text{ mm} > 1.5 \cdot d_0 = 33.0 \text{ mm}$ horizontal: $p_2 = 130.0 \text{ mm} > 2.5 \cdot d_0 = 55.0 \text{ mm}$ vertikal: $e_1 = 40.0 \text{ mm} > 1.5 \cdot d_0 = 33.0 \text{ mm}$ vertikal: $p_1 = 80.0 \text{ mm} > 2.5 \cdot d_0 = 55.0 \text{ mm}$ vertikal: $p_1 = 110.0 \text{ mm} > 2.5 \cdot d_0 = 55.0 \text{ mm}$ vertikal: $e_1 = 70.0 \text{ mm} > 1.5 \cdot d_0 = 33.0 \text{ mm}$

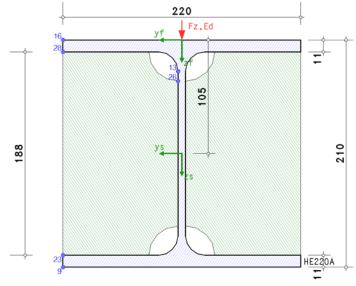
Querschnittswerte: $A = 64.34 \text{ cm}^2$, $z_s = 105.0 \text{ mm}$, $I_v = 5409.75 \text{ cm}^4$, $y_s = 0.0 \text{ mm}$, $I_z = 1954.56 \text{ cm}^4$

Spannungsschwingbreiten:

Pkt. 21: $y_f = 0.0 \text{ mm}, z_f = 210.0 \text{ mm}$ $\Delta \sigma_{x,Ed} = 22.6 \text{ N/mm}^2$

Spannungsschwingbreiten infolge Ermüdung:

Pkt. 21: $y_f = 0.0 \text{ mm}, z_f = 210.0 \text{ mm}$ $\Delta \sigma_{x,f} = 22.6 \text{ N/mm}^2$


Nachweis der Kerbspannungen:

Pkt. 21: y = 0.0 mm, z = 210.0 mm $\Delta \sigma_{x,f} = 22.6 \text{ N/mm}^2 < \Delta \sigma_{x,Rd,f} = 31.3 \text{ N/mm}^2 \Rightarrow U_{\Delta\sigma x} = 0.721 \text{ ok}$

Ermüdungsnachweis [Pkt. 21]: max U = 0.721 < 1 ok

2.5. Ermüdung des Konsolprofils (GZE)

Sonderprobleme nach Eurocode 3 EC 3-1-9 (12.10), NA: Deutschland

Kerbfälle / zul. Kerbspannungen bei N = 2·10⁶ Schwingspielen:

Pkt	y f mm	Zf mm	Δσx,Rd N/mm²	ΔτRd N/mm²	Δσ z,Rd N/mm²	Kerbpunkt	EC 3-1-9, Tab.
						11	0.1(0)
9	110.0	210.0	160.0	0.0	0.0	am Untergurt	8.1(2)
13	3.5	29.0	160.0	100.0	160.0	am Trägersteg	8.1(2) 8.1(6) 8.10(1)
16	110.0	0.0	160.0	0.0	0.0	am Obergurt	8.1(2)
23	110.0	199.0	80.0	0.0	0.0	infolge Quersteife	8.4(7)
26	3.5	38.0	0.0	100.0	0.0	infolge Quersteife	8.1(6)
28	110.0	11.0	80.0	0.0	0.0	infolge Quersteife	8.4(7)

Belastung

Lk 1: $N_{Ed} = -0.00 \text{ kN}, M_{y,Ed} = 0.00 \text{ kNm}, V_{z,Ed} = 80.00 \text{ kN}$

Lk 2: $N_{Ed} = -40.00 \text{ kN}, M_{y,Ed} = 4.20 \text{ kNm}, V_{z,Ed} = 110.00 \text{ kN}$

Querbelastung auf dem Obergurt: vertikale Einzellast Fz,Ed = 110.0 kN

2.5.1. Ermüdungsnachweis

Querschnittswerte: $A = 64.34 \text{ cm}^2$, $z_s = 105.0 \text{ mm}$, $l_y = 5409.75 \text{ cm}^4$, $y_s = 0.0 \text{ mm}$, $l_z = 1954.56 \text{ cm}^4$

wirksame Lasteinleitungslänge leff = $s_s + 2 \cdot t_f = 82.1 \text{ mm}$... am Trägersteg $\sigma_{oz} = -133.1 \text{ N/mm}^2$, $\tau_o = 26.6 \text{ N/mm}^2$

Spannungsschwingbreiten:

Pkt. 13: $y_f = 3.5 \text{ mm}, z_f = 29.0 \text{ mm}$ $\Delta \sigma_{x,Ed} = 12.1 \text{ N/mm}^2$ $\Delta \tau_{Ed} = 74.1 \text{ N/mm}^2$ $\Delta \sigma_{z,Ed} = 133.1 \text{ N/mm}^2$

Spannungsschwingbreiten infolge Ermüdung:

Pkt. 13: $v_f = 3.5 \text{ mm}, z_f = 29.0 \text{ mm}$

 $\Delta \sigma_{x,f} = 12.1 \text{ N/mm}^2$

 $\Delta \tau_f = 74.1 \text{ N/mm}^2$

 $\Delta \sigma_{z,f} = 133.1 \text{ N/mm}^2$

Nachweis der Kerbspannungen:

Pkt. 13: y = 3.5 mm, z = 29.0 mm

 $\Delta \sigma_{x,f} = 12.1 \text{ N/mm}^2 < \Delta \sigma_{x,Rd,f} = 139.1 \text{ N/mm}^2 \Rightarrow U_{\Delta \sigma x} = 0.087 \text{ ok}$ $\Delta \tau_f = 74.1 \text{ N/mm}^2 < \Delta \tau_{Rd,f} = 87.0 \text{ N/mm}^2$ \Rightarrow $U_{\Delta\tau} = 0.852$ ok $\Delta \sigma_{z,f} = 133.1 \text{ N/mm}^2 < \Delta \sigma_{z,Rd,f} = 139.1 \text{ N/mm}^2 \Rightarrow U_{\Delta \sigma z} = 0.956 \text{ ok}$

Interaction $U_i = U_{\Delta \sigma x}^3 + U_{\Delta \sigma z}^3 + U_{\Delta \tau}^5 = 1.324 > 1$ nicht ok!!

Ermüdungsnachweis [Pkt. 13]: max U = 0.956 < 1 ok

Endergebnis

Maximale Ausnutzung: Ermüdung der Verbindung / des Profils max U = 0.956 < 1 ok

Nachweis erbracht

4. Vorschriften

EN 1990, Eurocode 0: Grundlagen der Tragwerksplanung; Deutsche Fassung EN 1990:2002 + A1:2005 + A1:2005/AC:2010, Ausgabe Dezember 2010 EN 1990/NA, Nationaler Anhang zur EN 1990, Ausgabe Dezember 2010

EN 1993-1-1, Eurocode 3: Bemessung und Konstruktion von Stahlbauten -Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau; Deutsche Fassung EN 1993-1-1:2005 + AC:2009, Ausgabe Dezember 2010 EN 1993-1-1/A1, Ergänzungen zur EN 1993-1-1, Ausgabe Juli 2014 EN 1993-1-1/NA, Nationaler Anhang zur EN 1993-1-1, Ausgabe Dezember 2018

EN 1993-1-8, Eurocode 3: Bemessung und Konstruktion von Stahlbauten -Teil 1-8: Bemessung von Anschlüssen: Deutsche Fassung EN 1993-1-8:2005 + AC:2009, Ausgabe Dezember 2010 EN 1993-1-8/NA, Nationaler Anhang zur EN 1993-1-8, Ausgabe Dezember 2010

EN 1993-1-5, Eurocode 3: Bemessung und Konstruktion von Stahlbauten - Teil 1-5: Plattenförmige Bauteile; Deutsche Fassung EN 1993-1-5:2006 + AC:2009 + A1:2017 + A2:2019, Ausgabe Oktober 2019 EN 1993-1-5/NA, Nationaler Anhang zur EN 1993-1-5, Ausgabe Dezember 2010

EN 1993-1-9, Eurocode 3: Bemessung und Konstruktion von Stahlbauten - Teil 1-9: Ermüdung; Deutsche Fassung EN 1993-1-9:2006 + AC:2009, Ausgabe Dezember 2010 EN 1993-1-9/NA, Nationaler Anhang zur EN 1993-1-9, Ausgabe Dezember 2010