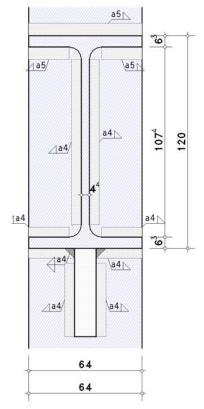

Konsole EC 3-1-8 (12.10), NA: Deutschland


1. Eingabeprotokoll

4H-EC3SK Version: 6/2025-1b

Details (Schnitt A - A)

Stahlsorte

Stahlgüte S235

Parameter der Stütze

Profil IPE120

Parameter des Trägers

Profil IPE120

Schweißnähte

Trägerflansch oben: Kehlnaht, Nahtdicke a = 5.0 mm

Trägersteg: Kehlnaht, Nahtdicke a = 4.0 mm

Trägerflansch unten: Kehlnaht, Nahtdicke a = 4.0 mm 75% der Druckspannung wird über Kontakt abgetragen

Dreieckrippe (unten)

Dicke t_R = 12.0 mm, Breite b_R = 100.0 mm, Länge l_R = 50.0 mm Schweißnähte an Stütze und Träger: Kehlnaht, Nahtdicke an = 4.0 mm

Parameter der Verbindung

geschweißter Anschluss

Abstand der Querbelastung ∆a = 130.0 mm

Nachweis der Lasteinleitung:

Querbelastung auf dem Obergurt der Konsole mit der Lasteinleitungslänge ss = 30.0 mm

Nachweis der Ermüdung:

Schadensäquivalenzfaktoren $\lambda_{\sigma} = 1.000$, $\lambda_{\tau} = 1.000$

Ermittlung der Tragfähigkeiten

Nachweis der Konsole-Stützenverbindung, Grenzzustand der Tragfähigkeit (GZT)

Nachweis der Lasteinleitung, Trägerkreuzung, Grenzzustand der Tragfähigkeit (GZT)

Ermüdungsnachweise der Verbindung sowie des Konsolprofils, Grenzzustand der Ermüdung (GZE)

Konsolbelastung und Schnittgrößen im Schnittpunkt der Systemachsen (GZT)

Lk	F _{1,Ed}		
	kN		
1	40.00		

F_{1,Ed}: Belastung der Konsole

Konsolbelastung (GZE)

Lk	F1,Ed			
	kN			
1	5.00			
2	15.00			

F_{1,Ed}: Belastung der Konsole

Materialsicherheitsbeiwerte (GZT)

Beanspruchbarkeit von Querschnitten $\gamma_{M0} = 1.00$

Beanspruchbarkeit von Bauteilen bei Stabilitätsversagen $\gamma_{M1} = 1.10$

Beanspruchbarkeit von Schrauben, Schweißnähten, Blechen auf Lochleibung $\gamma_{M2} = 1.25$

Materialsicherheitsbeiwert (GZE)

Bemessungskonzept: Schadenstoleranz, Schadensfolgen: hoch ⇒ Ermüdungsfestigkeit γMf = 1.15

Nachweise

2.1. Ergebnistabelle (GZT)

2.1.1. Ausnutzungen

Lk	Uj	Uı	Uj,b	Uj,σ	$U_{\mathtt{j}, \mathtt{ au}}$	$U_{j,w}$	Uj,r	$U_{1,\sigma}$	$U_{1,b}$	Uı,i	U
			= = =								
1	0.696	0.884	0.640	0.696	0.594	0.448	0.147	0.828	0.575	0.884	0.884*

Uį: res. Ausnutzung aus Träger-Stütze-Anschluss; Uį: res. Ausnutzung aus Lasteinleitung; Uį,b: Querschnittsausnutzung Träger

 $U_{j,\sigma}$: Ausnutzung aus Biegung; $U_{j,\tau}$: Ausnutzung aus Querkraft; $U_{j,w}$: Ausnutzung aus Schweißnaht $U_{j,r}$: Ausnutzung aus Steifen/Rippen; $U_{l,\sigma}$: Ausnutzung aus Spannungen am Steganschnitt; $U_{l,b}$: Ausnutzung aus Querlastbeulen

Uli: Ausnutzung aus Interaktion; U: Ausnutzung der Verbindung

2.2. Anschluss an die Stütze (GZT)

Biegesteifer Trägeranschluss EC 3-1-8 (12.10), NA: Deutschland

Datencheck

ok

2.2.1. Ergebnistabelle

Ausnutzung

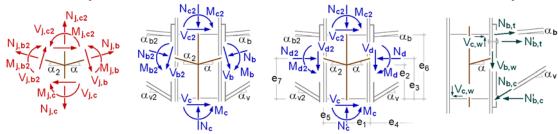
Lk	U _{o,b}	Um	U_{wp}	Ucf	U_{sb}	Uss	U
1	0.640	0.696	0.594	0.501	0.448	0.147	0.696*

 $\mathsf{U}_{\sigma,\mathrm{b}}$: Spannungsausnutzung am Träger; U_{m} : Ausnutzung aus Biegung; U_{wp} : Ausnutzung aus Schub im Stützensteg Uct: Ausnutzung aus Schub im Stützenflansch; Usb: Ausnutzung aus Schweißnaht; Uss: Ausnutzung aus Steifen/Rippen

2.2.2. Endergebnis

max U = 0.696 < 1 okMaximale Ausnutzung:

^{*)} maximale Ausnutzung


U: Ausnutzung der Verbindung *) maximale Ausnutzung

2.2.3. Lk 1 (maßgebend)

2.2.3.1. Bemessungsgrößen

Knotenschnittgrößen Anschnitt Anschluss ⊥ zur Anschlussebene

Teilschnittgrößen

Neigungswinkel: $\alpha_b = \alpha = \alpha_v = 0^\circ$

Abstände: $e_1 = 60.0 \text{ mm}$, $e_3 = 56.8 \text{ mm}$, $e_2 = 56.8 \text{ mm}$, $e_6 = 113.7 \text{ mm}$

Schnittgrößen senkrecht zu den Anschlussebenen

Anschnitt Träger

 $M_d = 5.20 \text{ kNm}, V_d = 40.00 \text{ kN}$

Teilschnittgrößen

 $N_{b,t} = -N_{d} \cdot z_{bu}/z_{b} + M_{d}/z_{b} = 45.73 \text{ kN}, z_{b} = 113.7 \text{ mm}, z_{bu} = 56.9 \text{ mm}$ $N_{b,c} = N_{d} \cdot z_{bo}/z_b + M_{d}/z_b = 45.73 \text{ kN}, z_b = 113.7 \text{ mm}, z_{bo} = 56.9 \text{ mm}$

 $V_{b,t} = -N_{b,t} \cdot \sin(\alpha_b) = 0.00 \text{ kN}, \quad V_{b,c} = N_{b,c} \cdot \sin(\alpha_v) = 0.00 \text{ kN}, \quad V_{b,w} = V_d - V_{b,t} - V_{b,c} = 40.00 \text{ kN}$

2.2.3.2. Querschnittstragfähigkeit im Anschnitt

elastischer Spannungsnachweis für M_V = -5.20 kNm, V_z = 40.00 kN

Nachweis: $\sigma_V = 150.35 \text{ N/mm}^2 < \sigma_{V,Rd} = 235.00 \text{ N/mm}^2 \Rightarrow U_{\sigma} = 0.640 < 1 \text{ ok}$

c/t-Verhältnis: einseitig gestützt: Ausnutzung Uc/t = 0.165 < 1 ok

beidseitig gestützt: Ausnutzung Uc/t = 0.098 < 1 ok

2.2.3.3. Anschlusstragfähigkeit

Übertragungsparameter: $\beta_i = 1.00$

2.2.3.3.1. Biegetragfähigkeit

Abstand der Zugkraft vom Druckpunkt: z = 113.7 mm

Tragfähigkeit

 $F_{Rd} = 65.7 \text{ kN}$

Tragfähigkeit der Flansche (Druck)

 $\Sigma F_{c,Rd}^* = 131.4 \text{ kN}$

Biegetragfähigkeit

 $M_{i,Rd} = F_{Rd} \cdot z = 7.5 \text{ kNm}$

Zugtragfähigkeit

 $N_{i,t,Rd} = F_{t,Rd} = 73.9 \text{ kN}$

Drucktragfähigkeit

 $N_{j,c,Rd} = \Sigma F_{c,Rd}^* = 131.4 \text{ kN}$

2.2.3.3.2. Schubtragfähigkeit

Schubtragfähigkeit des Stützenflanschs

 $V_{cf,Rd} = 79.84 \text{ kN}$

Schubtragfähigkeit des Stützenstegs

 $V_{wp,Rd} = 77.0 \ kN$

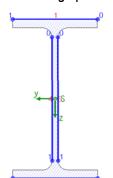
2.2.3.3.3. Gesamt

 $M_{j,Rd} = 7.5 \text{ kNm}$ $N_{j,t,Rd} = 73.9 \text{ kN}$ $N_{j,c,Rd} = 131.4 \text{ kN}$ $V_{wp,Rd} = 77.0 \text{ kN}$ $V_{cf,Rd} = 79.8 \text{ kN}$

2.2.3.4.1. Nachweis der Anschlusstragfähigkeit mit der Komponentenmethode

MEd = Md = 5.20 kNmBiegemoment:

VEd = IVdI - ΔVR = 32.00 kN, ΔVR = 8.00 kN: Querkraftanteil der Dreieckrippe Querkraft:


Schubkraft: $V_{c,w,Ed} = M_d/z - (V_{c1}-V_{c2})/2 = 45.73 \text{ kN}, z = 113.7 \text{ mm}$

Schubkraft: $V_{b,w,Ed} = 40.00 \text{ kN}$

 $Med/M_{i,Rd} = 0.696 < 1 ok$ $V_{c,w,Ed}/V_{wp,Rd} = 0.594 < 1 \text{ ok}$ $V_{b,w,Ed}/V_{cf,Rd} = 0.501 < 1 \text{ ok}$

2.2.3.4.2. Nachweis der Schweißnähte am Trägerprofil

```
Naht 1: Trägerflansch mit Zug außen
                                           Nähte 2,3: Trägerflansch mit Zug innen
                                           Nähte 4,5: Trägersteg beidseitig
Nähte 6,7: Trägerflansch mit Druck innen
Naht 8: Trägerflansch mit Druck außen
Naht 1: Nahtdicke a = 5.0 mm > a<sub>max</sub> = 0.7·t<sub>min</sub> = 4.4 mm (Schweisstechnik, s. DIN 18800) !!
Naht 2: Nahtdicke a = 5.0 mm > a<sub>max</sub> = 0.7·t<sub>min</sub> = 4.4 mm (Schweisstechnik, s. DIN 18800) !!
Naht 2: wirksame Nahtlänge leff = 22.8 mm < 30 mm ⇒ statisch nicht wirksam !!
Naht 2: wirksame Nahtlänge leff = 22.8 mm < 6·a = 30.0 mm ⇒ statisch nicht wirksam!!
Naht 4: Nahtdicke a = 4.0 mm > a<sub>max</sub> = 0.7·t<sub>min</sub> = 3.1 mm (Schweisstechnik, s. DIN 18800) !!
Naht 6: wirksame Nahtlänge leff = 22.8 mm < 30 mm ⇒ statisch nicht wirksam !!
Naht 6: wirksame Nahtlänge leff = 22.8 mm < 6·a = 24.0 mm ⇒ statisch nicht wirksam !!
Berechnungsquerschnitt:
```


Naht 1: $a_W = 5.0 \text{ mm}$ $I_w = 64.0 \text{ mm}$ Naht 4: $a_w = 4.0 \text{ mm}$ $l_w = 93.4 \text{ mm}$

Naht 5: siehe Naht 4

Naht 8: $a_W = 4.0 \text{ mm}$ $l_w = 64.0 \text{ mm}$

Bemessungsgrößen bezogen auf den Schwerpunkt des Profils:

 $M_{y,Ed} = -5.20 \text{ kNm}, \ V_{z,Ed} = 40.00 \text{ kN}$

Querschnittswerte bezogen auf den Schwerpunkt des Linienquerschnitts:

 $\Sigma A_W = 13.23 \text{ cm}^2$, $A_{W,z} = 7.47 \text{ cm}^2$, $\Sigma I_W = 31.5 \text{ cm}$ $I_{w,y} = 260.56 \text{ cm}^4$, $I_{w,z} = 20.02 \text{ cm}^4$, $\Delta z_w = -2.9 \text{ mm}$

Nachweise in den Endpunkten der Nähte:

75% Spannungsabtrag über Druckkontakt

Naht 1, Pkt. 0: $\sigma_{w,x} = 113.95 \text{ N/mm}^2$ \Rightarrow U_w = 0.448 < 1 ok Naht 4, Pkt. 0: $\sigma_{w,x} = 87.41 \text{ N/mm}^2$ $\tau_{W,z} = 53.53 \text{ N/mm}^2$ \Rightarrow U_w = 0.429 < 1 ok Pkt. 1: $\sigma_{w,x} = -24.75 \text{ N/mm}^2$ $\tau_{W,z} = 53.53 \text{ N/mm}^2$ \Rightarrow U_w = 0.275 < 1 ok Naht 8, Pkt. 0: $\sigma_{w,x} = -31.38 \text{ N/mm}^2$ \Rightarrow U_w = 0.123 < 1 ok

Ergebnis:

Naht 1, Pkt. 0: $\sigma_{w,x} = 113.95 \text{ N/mm}^2$

Max: $\sigma_{1,w,Ed} = 161.15 \text{ N/mm}^2 < f_{1w,d} = 360.00 \text{ N/mm}^2$

 $\sigma_{2,w,Ed} = 80.57 \text{ N/mm}^2 < f_{2w,d} = 259.20 \text{ N/mm}^2 \Rightarrow U_w = 0.448 < 1 \text{ ok}$

2.2.3.4.3. Nachweis der Stegsteifen

Dreieckrippe (Druck)

 $F_{c,Ed} = 9.37 \text{ kN}$

Kräfte

 $F = F_{c,Ed} = 9.37 \text{ kN}, H = F \cdot e_{F}/e_{H} = 3.94 \text{ kN}$

Voraussetzung: Steifen nicht beulgefährdet: Q-Klasse 1 ≤ 3 ok

Querschnitt an der Stütze

Drucktragfähigkeit N_{c,Rd} = (A·f_y) / γ_{M0} = 117.07 kN Bemessungsgröße: $F_{Ed} = (F^2 + 3 \cdot H^2)^{1/2} = 11.59 \text{ kN}$

 $F_{Ed} = 11.59 \text{ kN} < F_{Rd} = 117.07 \text{ kN} \implies U = 0.099 < 1 \text{ ok}$

Querschnitt am Träger

Drucktragfähigkeit N_{c,Rd} = (A·f_y) / γ_{M0} = 258.07 kN Bemessungsgröße: $F_{Ed} = (H^2 + 3 \cdot F^2)^{1/2} = 16.70 \text{ kN}$ $F_{Ed} = 16.70 \text{ kN} < F_{Rd} = 258.07 \text{ kN} \Rightarrow U = 0.065 < 1 \text{ ok}$

Schweißnähte an der Stütze

Tragfähigkeit einer Schweißnaht: Fw,Rd = 831.38 kN/m

Bemessungsgröße: $F_{Ed} = (F^2 + H^2)^{1/2} / (2 \cdot b_1) = 122.42 \text{ kN/m}, b_1 = 41.5 \text{ mm}$

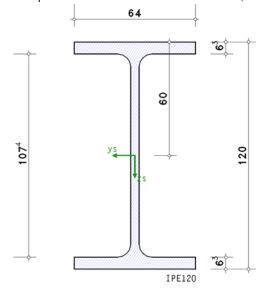
 $F_{Ed} = 122.42 \text{ kN/m} < F_{Rd} = 831.38 \text{ kN/m} \Rightarrow U = 0.147 < 1 \text{ ok}$

Schweißnähte am Träger

Tragfähigkeit einer Schweißnaht: Fw,Rd = 831.38 kN/m

zweiseitiger Rippenanschluss:

Bemessungsgröße: $F_{Ed} = (F^2 + H^2)^{1/2} / (2 \cdot I_1) = 55.53 \text{ kN/m}, I_1 = 91.5 \text{ mm}$


 $F_{Ed} = 55.53 \text{ kN/m} < F_{Rd} = 831.38 \text{ kN/m} \Rightarrow U = 0.067 < 1 \text{ ok}$

2.2.3.4.4. Nachweisergebnis

Maximale Ausnutzung: max U = 0.696 < 1 ok

2.3. Lasteinleitung in die Konsole (GZT)

Sonderprobleme nach Eurocode 3 EC 3-1-5 (10.19), NA: Deutschland

Voraussetzung: Flanschinduziertes Stegbeulen ist ausgeschlossen.

Voraussetzung: Platten-/Schubbeulen ist ausgeschlossen.

2.3.1. Ergebnistabelle

Lk	Fz,Ed	V_{Ed}	U_{σ}	U_b	Ui	U
	kN	kΝ				
1	40.00	40.00	0.828	0.575	0.884	0.884*

Fz.Ed: vertikale Einzellast aus einem Lastträger; VEd: Bemessungsgrößen im Querschnitt; Uo: Ausnutzung aus Spannungen am Steganschnitt Ub: Ausnutzung aus Querlastbeulen; Ui: Ausnutzung aus Interaktion; U: Ausnutzung aus Lasteinleitung

*) maximale Ausnutzung

2.3.2. Endergebnis

Maximale Ausnutzung [Lk 1]: max U = 0.884 < 1 ok

2.3.3. Lk 1 (maßgebend)

Querschnittswerte: $A = 13.21 \text{ cm}^2$, $z_s = 60.0 \text{ mm}$, $l_y = 317.76 \text{ cm}^4$, $y_s = 0.0 \text{ mm}$, $l_z = 27.67 \text{ cm}^4$

Lasteinzugsbreite durch den Träger $s_s' = 2 \cdot t_f + t_W + 1.172 \cdot r = 25.2 \text{ mm}$

Zur Info: Lagerpressung Fz,Ed,GZT/(Ss·Ss') = 52.91 N/mm²

wirksame Lasteinleitungslänge leff = ss + 2·tf = 42.6 mm

Länge der starren Lasteinleitung:

bezogen auf die Flanschaußenkante $s_s = l_{eff} - 2 \cdot t_f = 30.0 \text{ mm}$ / auf den Steganschnitt $s_w = l_{eff} + 2 \cdot r = 56.6 \text{ mm}$

2.3.3.1. Stegpressung (GZT)

zulässige Spannungen: $\sigma_{Rd} = f_y/\gamma_{M0} = 235.0 \text{ N/mm}^2$, $\tau_{Rd} = f_y/(3^{1/2}.\gamma_{M0}) = 135.7 \text{ N/mm}^2$

Einzellastpressung am Steganschnitt:

lokale Spannungen σoz,Ed = -160.6 N/mm²

 $|\sigma_{oz,Ed}| = 160.6 \text{ N/mm}^2 < \sigma_{Rd} = 235.0 \text{ N/mm}^2 \Rightarrow U = 0.683 < 1 \text{ ok}$

Spannungen am Steganschnitt:

Querbelastung Fz,Ed = 40.0 kN

Schubbeulen: $h_p/t_p = 24.41 \le 72 \cdot \epsilon/\eta = 60.00$ ok

 $Lk 1: V_{z,Ed} = 40.0 kN$

Spannungen txz,Ed = 63.4 N/mm²

 $|\tau_{XZ,Ed}| = 63.4 \text{ N/mm}^2 < \tau_{Rd} = 135.7 \text{ N/mm}^2 \implies U = 0.468 < 1 \text{ ok}$ $\sigma_V = 194.6 \text{ N/mm}^2 < \sigma_{Rd} = 235.0 \text{ N/mm}^2 \implies U = 0.828 < 1 \text{ ok}$ Ausnutzung am Steganschnitt max $U_{\sigma} = 0.828 < 1$ ok

Maximale Ausnutzung: max U = 0.828 < 1 ok

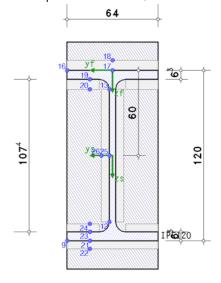
2.3.3.2. Querlastbeulen (GZT)

Schlankheitsgrad $\lambda_F = (F_y/F_{cr})^{1/2} = 0.326$, $F_y = 76.5$ kN

Abminderungsfaktor $\chi_F = 1.000$

Beulwiderstand $F_{z,Rd} = f_y \cdot L_{eff} \cdot t_w / \gamma_{M1} = 69.59 \text{ kN}, L_{eff} = \chi_F \cdot l_y = 74.0 \text{ mm}, l_y = 74.0 \text{ mm}$

Nachweis: $F_{z,Ed}/F_{z,Rd} = 0.575 < 1$ ok


Interaktion (ohne Platten-/Schubbeulen):

Querbelastung und Vergleichsspannung $(\eta_2 + 0.8 \cdot \eta_1) / 1.4 = 0.884 < 1$ ok

mit $\eta_2 = F_{z,Ed}/F_{z,Rd} = 0.575$, $\eta_1 = \max U_{\sigma} = 0.828$

2.4. Ermüdung der Verbindung Konsole-Stütze (GZE)

Sonderprobleme nach Eurocode 3 EC 3-1-9 (12.10), NA: Deutschland

Kerbfälle / zul. Kerbspannungen bei N = 2·10⁶ Schwingspielen:

Pkt	Уf	Zf	Δσx,Rd	Δau Rd	Δσz,Rd	Kerbpunkt	EC 3-1-9, Tab.
	mm	mm	N/mm^2	N/mm^2	N/mm²		
9	32.0	120.0	160.0	0.0	0.0	am Untergurt	8.1(2)
12	2.2	106.7	160.0	100.0	0.0	am Trägersteg	8.1(2) 8.1(6)
13	2.2	13.3	160.0	100.0	160.0	am Trägersteg	8.1(2) 8.1(6) 8.10(1)
16	32.0	0.0	160.0	0.0	0.0	am Obergurt	8.1(2)
° 17	0.0	0.0	36.0	0.0	0.0	am Blech (Obergurt)	8.5(3)
18	0.0	-7.1	80.0	0.0	0.0	am Blech (Obergurt)	8.5(1)
° 19	16.0	6.3	36.0	0.0	0.0	am Blech (Obergurt)	8.5(3)
20	16.0	13.4	80.0	0.0	0.0	am Blech (Obergurt)	8.5(1)
° 21	16.0	120.0	36.0	0.0	0.0	am Blech (Untergurt)	8.5(3)
22	16.0	125.7	80.0	0.0	0.0	am Blech (Untergurt)	8.5(1)
° 23	16.0	113.7	36.0	0.0	0.0	am Blech (Untergurt)	8.5(3)
24	16.0	108.0	80.0	0.0	0.0	am Blech (Untergurt)	8.5(1)
° 25	2.2	60.0	36.0	80.0	0.0	am Blech (Steg)	8.5(3) 8.5(8)
26	7.9	60.0	0.0	100.0	0.0	am Blech (Steg)	8.2(5)

^{°:} Nachweis der Schweißnaht

Belastung

Lk 1: $M_{y,Ed} = -0.65 \text{ kNm}, V_{z,Ed} = 5.00 \text{ kN}$ Lk 2: $M_{y,Ed} = -1.95 \text{ kNm}, V_{z,Ed} = 15.00 \text{ kN}$

2.4.1. Ermüdungsnachweis

Querschnittswerte: $A = 13.21 \text{ cm}^2$, $z_s = 60.0 \text{ mm}$, $I_v = 317.76 \text{ cm}^4$, $y_s = 0.0 \text{ mm}$, $I_z = 27.67 \text{ cm}^4$

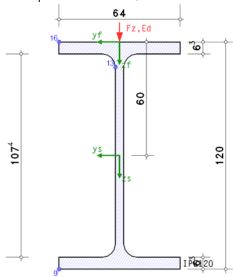
Spannungsschwingbreiten:

Pkt. 21: $y_f = 16.0 \text{ mm}, z_f = 120.0 \text{ mm}$ $\Delta \sigma_{x,Ed} = 27.1 \text{ N/mm}^2$

Spannungsschwingbreiten infolge Ermüdung:

Pkt. 21: $y_f = 16.0 \text{ mm}, z_f = 120.0 \text{ mm}$ $\Delta \sigma_{x,f} = 27.1 \text{ N/mm}^2$

Nachweis der Kerbspannungen:



 $\Delta \sigma_{x,f} = 27.1 \text{ N/mm}^2 < \Delta \sigma_{x,Rd,f} = 31.3 \text{ N/mm}^2 \Rightarrow U_{\Delta \sigma x} = 0.867 \text{ ok}$

Ermüdungsnachweis [Pkt. 21]: max U = 0.867 < 1 ok

2.5. Ermüdung des Konsolprofils (GZE)

Sonderprobleme nach Eurocode 3 EC 3-1-9 (12.10), NA: Deutschland

Kerbfälle / zul. Kerbspannungen bei N = 2·10⁶ Schwingspielen:

Pkt	y f mm	Zf mm	∆ ox,Rd N/mm²	ΔτRd N/mm²	∆ σz,Rd N/mm²	Kerbpunkt	EC 3-1-9, Tab.
9	32.0	120.0	160.0	0.0	0.0	am Untergurt	8.1(2)
13	2.2	13.3	160.0	100.0	160.0	am Trägersteg	8.1(2) 8.1(6) 8.10(1)
16	32.0	0.0	160.0	0.0	0.0	am Obergurt	8.1(2)

Belastung

Lk 1: $V_{z,Ed} = 5.00 \text{ kN}$ Lk 2: $V_{z,Ed} = 15.00 \text{ kN}$

Querbelastung auf dem Obergurt: vertikale Einzellast Fz,Ed = 15.0 kN

2.5.1. Ermüdungsnachweis

Querschnittswerte: $A = 13.21 \text{ cm}^2$, $z_s = 60.0 \text{ mm}$, $l_y = 317.76 \text{ cm}^4$, $y_s = 0.0 \text{ mm}$, $l_z = 27.67 \text{ cm}^4$

wirksame Lasteinleitungslänge leff = ss + 2·tf = 42.6 mm ... am Trägersteg σ_{oz} = -60.2 N/mm², τ_{o} = 12.0 N/mm²

Spannungsschwingbreiten:

Pkt. 13: $y_f = 2.2 \text{ mm}, z_f = 13.3 \text{ mm}$ $\Delta \sigma_{z,Ed} = 60.2 \text{ N/mm}^2$ $\Delta \tau Ed = 42.3 \text{ N/mm}^2$

Spannungsschwingbreiten infolge Ermüdung:

Pkt. 13: $y_f = 2.2 \text{ mm}, z_f = 13.3 \text{ mm}$ $\Delta \sigma_{z,f} = 60.2 \text{ N/mm}^2$ $\Delta \tau_f = 42.3 \text{ N/mm}^2$

Nachweis der Kerbspannungen:

Pkt. 13: y = 2.2 mm, z = 13.3 mm $\Delta \tau_f = 42.3 \text{ N/mm}^2 < \Delta \tau_{Rd,f} = 87.0 \text{ N/mm}^2$ \Rightarrow $U_{\Delta\tau} = 0.487$ ok $\Delta \sigma_{z,f} = 60.2 \text{ N/mm}^2 < \Delta \sigma_{z,Rd,f} = 139.1 \text{ N/mm}^2 \Rightarrow U_{\Delta \sigma z} = 0.433 \text{ ok}$

max U = 0.487 < 1 okErmüdungsnachweis [Pkt. 13]:

3. Endergebnis

Maximale Ausnutzung: max U = 0.884 < 1 okLasteinleitung in die Konsole

Nachweis erbracht

4. Vorschriften

EN 1990, Eurocode 0: Grundlagen der Tragwerksplanung; Deutsche Fassung EN 1990:2002 + A1:2005 + A1:2005/AC:2010, Ausgabe Dezember 2010 EN 1990/NA, Nationaler Anhang zur EN 1990, Ausgabe Dezember 2010

EN 1993-1-1, Eurocode 3: Bemessung und Konstruktion von Stahlbauten -

Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau;

Deutsche Fassung EN 1993-1-1:2005 + AC:2009, Ausgabe Dezember 2010 EN 1993-1-1/A1, Ergänzungen zur EN 1993-1-1, Ausgabe Juli 2014 EN 1993-1-1/NA, Nationaler Anhang zur EN 1993-1-1, Ausgabe Dezember 2018

EN 1993-1-8, Eurocode 3: Bemessung und Konstruktion von Stahlbauten -Teil 1-8: Bemessung von Anschlüssen; Deutsche Fassung EN 1993-1-8:2005 + AC:2009, Ausgabe Dezember 2010 EN 1993-1-8/NA, Nationaler Anhang zur EN 1993-1-8, Ausgabe Dezember 2010

EN 1993-1-5, Eurocode 3: Bemessung und Konstruktion von Stahlbauten - Teil 1-5: Plattenförmige Bauteile; Deutsche Fassung EN 1993-1-5:2006 + AC:2009 + A1:2017 + A2:2019, Ausgabe Oktober 2019 EN 1993-1-5/NA, Nationaler Anhang zur EN 1993-1-5, Ausgabe Dezember 2010

EN 1993-1-9, Eurocode 3: Bemessung und Konstruktion von Stahlbauten - Teil 1-9: Ermüdung; Deutsche Fassung EN 1993-1-9:2006 + AC:2009, Ausgabe Dezember 2010 EN 1993-1-9/NA, Nationaler Anhang zur EN 1993-1-9, Ausgabe Dezember 2010