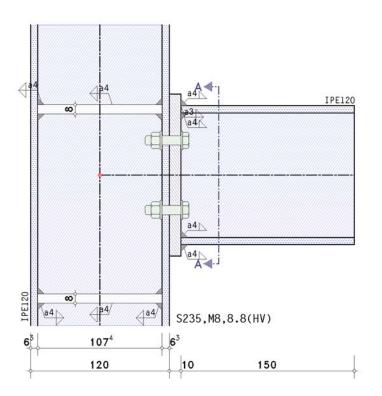
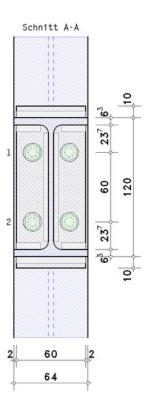
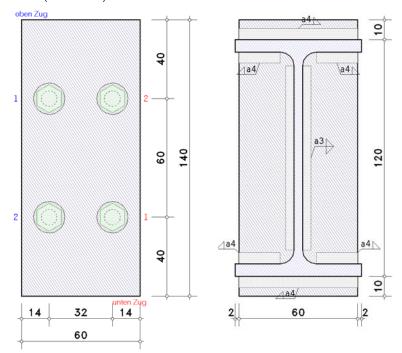

POS. 32: RELI / GESCHWEISST-GESCHRAUBT

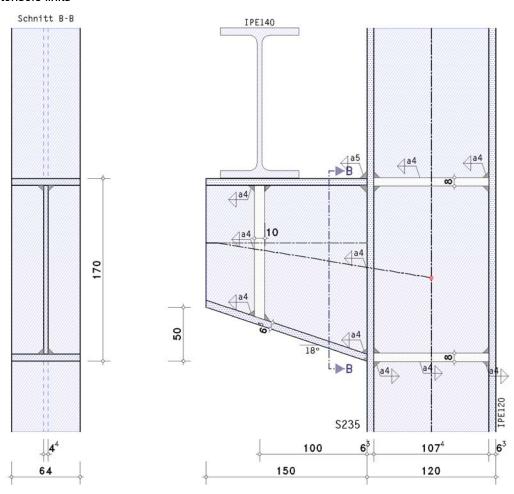

Konsole EC 3-1-8 (12.10), NA: Deutschland

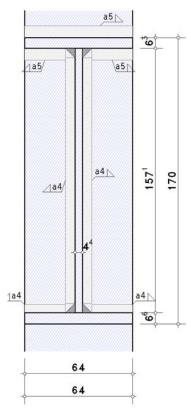

4H-EC3SK Version: 6/2025-1b

1. Eingabeprotokoll



Konsole rechts





Details (Schnitt A - A)

Konsole links

Stahlsorte

Stahlgüte S235

Parameter der Stütze

Profil IPE120

Verstärkung des Profils durch Quersteifen (Stegsteifen in Höhe des max. Trägerzug- und -druckflanschs, det = 163.5 mm):

Dicke t_{st} = 8.0 mm, Breite b_{st} = 29.8 mm, Länge l_{st} = 107.4 mm

Aussparung an den Steifen cst = 10.5 mm

Schweißnähte ast,f = 4.0 mm, ast,w = 4.0 mm

Zweiseitiger Träger-Stützenanschluss

Nach EC 3-1-8, 5.3 wird bei zweiseitigen Träger-Stützen-Verbindungen jede Anschlussseite unabhängig

von der anderen untersucht. Die Systemlinien der Träger treffen sich nicht in einem Punkt (△ = 32.5 mm != 0 !!). EC 3-Bedingun

Anschluss rechts

Parameter des Trägers

Profil IPE120

Schrauben

Festigkeitsklasse 8.8, Schraubengröße M8

große Schlüsselweite (HV-Schraube), vorgespannt (zur Info: Regelvorspannkraft Fp, c* = 0.7·fyb·As = 16.4 kN)

Schaft in der Scherfuge

Schweißnähte

Trägerflansch oben: Kehlnaht, Nahtdicke a = 4.0 mm

Trägersteg: Kehlnaht, Nahtdicke a = 3.0 mm

Trägerflansch unten: Kehlnaht, Nahtdicke a = 4.0 mm 75% der Druckspannung wird über Kontakt abgetragen

Parameter der Verbindung

geschraubter Stirnblechanschluss

Stirnblech Dicke tp = 10.0 mm, Breite bp = 60.0 mm, Länge lp = 140.0 mm

Überstände $h_{p,o} = 10.0 \text{ mm}, h_{p,u} = 10.0 \text{ mm}$

Schrauben:

2 Schraubenreihen mit je 2 Schrauben

Achsabstand der Schrauben zum seitlichen Rand des Stirnblechs e2 = 14.0 mm

Achsabstand der ersten Schraubenreihe zum oberen Rand des Stirnblechs (Endreihe) e₀ = 40.0 mm

Achsabstand der letzten Schraubenreihe zum unteren Rand des Stirnblechs (Endreihe) eu = 40.0 mm

Achsabstand der Schraubenreihen voneinander p₁₋₂ = 60.0 mm

Abstand der Querbelastung ∆a = 130.0 mm

Nachweis der Lasteinleitung:

Querbelastung auf dem Obergurt der Konsole mit der Lasteinleitungslänge ss = 30.0 mm

Nachweis der Ermüdung:

Schadensäquivalenzfaktoren $\lambda_{\sigma} = 0.300$, $\lambda_{\tau} = 0.300$

Anschluss links

Parameter des Trägers

Profilparameter (I-Profil):

Gesamthöhe h = 120.0 mm, Stegdicke tw = 4.4 mm

Flanschbreite bf = 64.0 mm, Flanschdicke tf = 6.3 mm

Kehlnaht a = 4.0 mm

geschweißtes Profil, Kehlnahtdicke a = 4.0 mm

Voute: Neigungswinkel gegen die Horizontale α_V = 18.43°

Länge der Voute $L_V = 150.0$ mm, Voutenhöhe im Anschluss $h_V = L_V \cdot (\tan(\alpha_V) - \tan(\alpha_D)) = 50.0$ mm

Gesamte Trägerhöhe im Anschluss hges = hb + hv = 170.0 mm

Verstärkung des Profils durch Quersteifen:

Dicke t_{st} = 10.0 mm, Breite b_{st} = 29.8 mm, Länge l_{st} = 107.4 mm

Aussparung an den Steifen cst = 8.5 mm

Schweißnähte ast,f = 4.0 mm, ast,w = 4.0 mm

Schweißnähte

Trägerflansch oben: Kehlnaht, Nahtdicke a = 5.0 mm

Trägersteg: Kehlnaht, Nahtdicke a = 4.0 mm

Trägerflansch unten: Kehlnaht, Nahtdicke a = 4.0 mm, Öffnungswinkel φ = 108°

75% der Druckspannung wird über Kontakt abgetragen

Parameter der Verbindung

geschweißter Anschluss

Abstand der Querbelastung ∆a = 100.0 mm

Nachweis der Lasteinleitung:

Querbelastung auf dem Obergurt der Konsole aus einem Lastträger (Trägerkreuzung) Profil IPE140 Nachweis der Ermüdung:

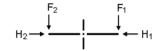
Schadensäquivalenzfaktoren $\lambda_{\sigma} = 1.000$, $\lambda_{\tau} = 1.000$

Ermittlung der Tragfähigkeiten

Nachweis der Konsole-Stützenverbindung, Grenzzustand der Tragfähigkeit (GZT)

Nachweis der Lasteinleitung, Trägerkreuzung, Grenzzustand der Tragfähigkeit (GZT)

Ermüdungsnachweise der Verbindung sowie des Konsolprofils, Grenzzustand der Ermüdung (GZE)


Konsolbelastung und Schnittgrößen im Schnittpunkt der Systemachsen (GZT)

Lk	F1,Ed	F2,Ed		
	kN	kN		
1	40.00	40.00		

F_{1.Ed},F_{2.Ed}: Belastung der Konsole

Konsolbelastung (GZE)

Lk	F1,Ed	F2,Ed
	kΝ	kN
1	5.00	5.00
2	15.00	15.00

F_{1,Ed},F_{2,Ed}: Belastung der Konsole

Materialsicherheitsbeiwerte (GZT)

Beanspruchbarkeit von Querschnitten γ_{M0} = 1.00

Beanspruchbarkeit von Bauteilen bei Stabilitätsversagen $\gamma_{M1} = 1.10$

Beanspruchbarkeit von Schrauben, Schweißnähten, Blechen auf Lochleibung γм2 = 1.25

Materialsicherheitsbeiwert (GZE)

Bemessungskonzept: Schadenstoleranz, Schadensfolgen: hoch ⇒ Ermüdungsfestigkeit γMf = 1.15

2. Nachweise rechts

2.1. Ergebnistabelle (GZT)

2.1.1. Ausnutzungen je Anschlussseite

Lk	Uj	U ₁	Uj,b	Uj,σ	Uj,τ	Uj,w	Uj,r	U1,σ	U _{1,b}	U1,i	U
1	1.374	0.884	0.640	1.339	1.374	0.618	0.795	0.828	0.575	0.884	1.374*

Uj: res. Ausnutzung aus Träger-Stütze-Anschluss; Uj: res. Ausnutzung aus Lasteinleitung; Uj:b: Querschnittsausnutzung Träger

 $\mathsf{U}_{j,\sigma}^{\mathsf{c}}$: Ausnutzung aus Biegung; $\mathsf{U}_{j,\tau}^{\mathsf{c}}$: Ausnutzung aus Querkraft; $\mathsf{U}_{j,w}^{\mathsf{c}}$: Ausnutzung aus Schweißnaht

Uj́;: Ausnutzung aus Steifen/Rippen; Ulֵפּ: Ausnutzung aus Spannungen am Steganschnitt; Ulˌb: Ausnutzung aus Querlastbeulen

Ui;: Ausnutzung aus Interaktion; U: Ausnutzung je Anschlussseite; U: Ausnutzung je Anschlussseite *) maximale Ausnutzung je Anschlussseite

2.2. Anschluss an die Stütze (GZT)

Biegesteifer Trägeranschluss EC 3-1-8 (12.10), NA: Deutschland

Hinweis

Der Nachweis der Verbindung nach EC 3-1-8 erfolgt ohne Berücksichtigung der Vorspannkräfte.

Verbindungen können jedoch mit vorgespannten HV-Schrauben ausgeführt werden.

Datencheck

ok

Schraubenabstände zum Stützensteg überprüfen (∆ewc = -1.2 mm ≤ 0) !!

Schraubenabstände am Stirnblech

Schraubenabstand vom Stützenrand

horizontal: $e_2 = 14.0 \text{ mm} > 1.2 \cdot d_0 = 10.8 \text{ mm}$, horizontal: $p_2 = 32.0 \text{ mm} > 2.4 \cdot d_0 = 21.6 \text{ mm}$, oben-unten: $e_1 = 40.0 \text{ mm} > 1.2 \cdot d_0 = 10.8 \text{ mm}$, oben-unten: $e_1 = 40.0 \text{ mm} > 2.2 \cdot d_0 = 19.8 \text{ mm}$, oben-unten: $e_1 = 40.0 \text{ mm} > 1.2 \cdot d_0 = 10.8 \text{ mm}$, oben-unten: $e_1 = 40.0 \text{ mm} > 1.2 \cdot d_0 = 10.8 \text{ mm}$, oben-unten: $e_1 = 40.0 \text{ mm} > 1.2 \cdot d_0 = 10.8 \text{ mm}$, oben-unten: $e_1 = 40.0 \text{ mm} > 1.2 \cdot d_0 = 10.8 \text{ mm}$, oben-unten: $e_1 = 40.0 \text{ mm} > 1.2 \cdot d_0 = 10.8 \text{ mm}$, oben-unten: $e_1 = 40.0 \text{ mm} > 1.2 \cdot d_0 = 10.8 \text{ mm}$, oben-unten: $e_1 = 40.0 \text{ mm} > 1.2 \cdot d_0 = 10.8 \text{ mm}$, oben-unten: $e_1 = 40.0 \text{ mm} > 1.2 \cdot d_0 = 10.8 \text{ mm}$, oben-unten: $e_1 = 40.0 \text{ mm} > 1.2 \cdot d_0 = 10.8 \text{ mm}$, oben-unten: $e_1 = 40.0 \text{ mm} > 1.2 \cdot d_0 = 10.8 \text{ mm}$, oben-unten: $e_1 = 40.0 \text{ mm} > 1.2 \cdot d_0 = 10.8 \text{ mm}$, oben-unten: $e_1 = 40.0 \text{ mm} > 1.2 \cdot d_0 = 10.8 \text{ mm}$, oben-unten: $e_1 = 40.0 \text{ mm} > 1.2 \cdot d_0 = 10.8 \text{ mm}$, oben-unten: $e_1 = 40.0 \text{ mm} > 1.2 \cdot d_0 = 10.8 \text{ mm}$, oben-unten: $e_1 = 40.0 \text{ mm} > 1.2 \cdot d_0 = 10.8 \text{ mm}$, oben-unten: $e_1 = 40.0 \text{ mm} > 1.2 \cdot d_0 = 10.8 \text{ mm}$, oben-unten: $e_1 = 40.0 \text{ mm} > 1.2 \cdot d_0 = 10.8 \text{ mm}$, oben-unten: $e_1 = 40.0 \text{ mm} > 1.2 \cdot d_0 = 10.8 \text{ mm}$, oben-unten: $e_1 = 40.0 \text{ mm} > 1.2 \cdot d_0 = 10.8 \text{ mm}$, oben-unten: $e_1 = 40.0 \text{ mm} > 1.2 \cdot d_0 = 10.8 \text{ mm}$, oben-unten: $e_1 = 40.0 \text{ mm} > 1.2 \cdot d_0 = 10.8 \text{ mm}$, oben-unten: $e_1 = 40.0 \text{ mm} > 1.2 \cdot d_0 = 10.8 \text{ mm}$, oben-unten: $e_1 = 40.0 \text{ mm} > 1.2 \cdot d_0 = 10.8 \text{ mm}$, oben-unten: $e_1 = 40.0 \text{ mm} > 1.2 \cdot d_0 = 10.8 \text{ mm}$, oben-unten: $e_1 = 40.0 \text{ mm} > 1.2 \cdot d_0 = 10.8 \text{ mm}$, oben-unten: $e_1 = 40.0 \text{ mm} > 1.2 \cdot d_0 = 10.8 \text{ mm}$, oben-unten: $e_1 = 40.0 \text{ mm} > 1.2 \cdot d_0 = 10.8 \text{ mm}$, oben-unten: $e_1 = 40.0 \text{ mm} > 1.2 \cdot d_0 = 10.8 \text{ mm}$, oben-unten: $e_1 = 40.0 \text{ mm} > 1.2 \cdot d_0 = 10.8 \text{ mm}$, oben-unten: $e_1 = 40.0 \text{ mm} > 1.2 \cdot d_0 = 10.8 \text{ mm}$, oben-unten: $e_1 = 40.0 \text{ mm} > 1.2 \cdot$

horizontal: $e_2 = 16.0 \text{ mm} > 1.2 \cdot d_0 = 10.8 \text{ mm}$, $e_2 = 16.0 \text{ mm} < 4 \cdot t + 40 \text{ mm} = 65.2 \text{ mm}$

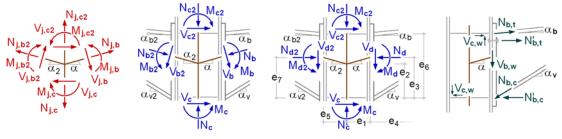
2.2.1. Ergebnistabelle

Ausnutzuna

Lk	U _o ,b	U_{m}	$U_{\boldsymbol{v}}$	U_{wp}	U_{ep}	U_{sb}	Uss	U
			= = =	= = =				= = =
1	0.640	1.339	1.374	0.937	0.343	0.618	0.795	1.374*

 $U_{\sigma,b}$: Spannungsausnutzung am Träger; U_m : Ausnutzung aus Biegung; U_v : Ausnutzung aus Abscheren/Lochleibung U_{wp} : Ausnutzung aus Schub im Stirnblech; U_{sb} : Ausnutzung aus Schweißnaht U_{ss} : Ausnutzung aus Steifen/Rippen; U: Ausnutzung der Verbindung *) maximale Ausnutzung

2.2.2. Endergebnis


Maximale Ausnutzung: max U = 1.374 > 1 nicht ok !!

2.2.3. Lk 1 (maßgebend)

2.2.3.1. Bemessungsgrößen

Knotenschnittgrößen Anschnitt Anschluss ⊥ zur Anschlussebene

Teilschnittgrößen

Neigungswinkel: $\alpha_b = \alpha = \alpha_v = 0^\circ$

Abstände: $e_1 = 60.0 \text{ mm}$, $e_3 = 56.8 \text{ mm}$, $e_2 = 56.8 \text{ mm}$, $e_6 = 113.7 \text{ mm}$

Schnittgrößen senkrecht zu den Anschlussebenen

Anschnitt Träger

 $M_d = 5.60 \text{ kNm}, \ V_d = 40.00 \text{ kN}$

Teilschnittgrößen

Schnittgrößen im Anschnitt Stirnblech-Träger: $M'_d = M_d - V_d \cdot t_p = 5.20 \text{ kNm}$

 $N_{b,t} = -N_{d} \cdot z_{bu}/z_b + M'_{d}/z_b = 45.73 \ kN, \ z_b = 113.7 \ mm, \ z_{bu} = 56.9 \ mm$

 $N_{b,c} = N_d \cdot z_{bo}/z_b + M'_d/z_b = 45.73 \ kN, \ z_b = 113.7 \ mm, \ z_{bo} = 56.9 \ mm$

 $V_{b,t} = -N_{b,t} \cdot sin(\alpha_b) = 0.00 \ kN, \quad V_{b,c} = N_{b,c} \cdot sin(\alpha_V) = 0.00 \ kN, \quad V_{b,w} = V_d - V_{b,t} - V_{b,c} = 40.00 \ kN, \quad V_{b,w} = V_d - V_{b,t} - V_{b,c} = 40.00 \ kN, \quad V_{b,w} = V_d - V_{b,t} - V_{b,c} = 40.00 \ kN, \quad V_{b,w} = V_d - V_{b,t} - V_{b,c} = 40.00 \ kN, \quad V_{b,w} = V_d - V_{b,t} - V_{b,c} = 40.00 \ kN, \quad V_{b,w} = V_d - V_{b,t} - V_{b,c} = 40.00 \ kN, \quad V_{b,w} = V_d - V_{b,t} - V_{b,c} = 40.00 \ kN, \quad V_{b,w} = V_d - V_{b,t} - V_{b,c} = 40.00 \ kN, \quad V_{b,w} = V_d - V_{b,t} - V_{b,c} = 40.00 \ kN, \quad V_{b,w} = V_d - V_{b,t} - V_{b,c} = 40.00 \ kN, \quad V_{b,w} = V_d - V_{b,t} - V_{b,c} = 40.00 \ kN, \quad V_{b,w} = V_d - V_{b,t} -$

2.2.3.2. Querschnittstragfähigkeit im Anschnitt

elastischer Spannungsnachweis für My = -5.20 kNm, Vz = 40.00 kN

Nachweis: $\sigma_V = 150.35 \text{ N/mm}^2 < \sigma_{V,Rd} = 235.00 \text{ N/mm}^2 \Rightarrow U_{\sigma} = 0.640 < 1 \text{ ok}$

c/t-Verhältnis: einseitig gestützt: Ausnutzung $U_{c/t} = 0.165 < 1$ ok

beidseitig gestützt: Ausnutzung Uc/t = 0.098 < 1 ok

2.2.3.3. Anschlusstragfähigkeit

Übertragungsparameter: βi = 1.00

2.2.3.3.1. Biegetragfähigkeit

Abstand der Zug-Schraubenreihen vom Druckpunkt: h1 = 86.8 mm, h2 = 26.9 mm

Tragfähigkeit je Schraubenreihe (Zug)

Reihe 1: Ftr,Rd = 36.8 kN

Reihe 2: $F_{tr,Rd} = 36.8 \text{ kN}$

 $\Sigma F_{tr,Rd}^* = 73.5 \text{ kN}$

Tragfähigkeit je Schraubenreihe (Biegung)

Reihe 1: $F_{tr,Rd} = 36.8 \text{ kN}$

Reihe 2: $F_{tr,Rd} = 36.8 \text{ kN}$

 $\Sigma F_{tr,Rd} = 73.5 \text{ kN}$

Mögliches Versagen durch Grundkomponente 4

Tragfähigkeit der Flansche

 $\Sigma F_{c,Rd}^* = 164.5 \text{ kN}$

Biegetragfähigkeit

 $M_{i,Rd} = \Sigma(F_{tr,Rd} \cdot h_r) = 4.2 \text{ kNm}$

Zugtragfähigkeit

 $N_{i,t,Rd} = \Sigma F_{tr,Rd}^* = 73.5 \text{ kN}$

Drucktragfähigkeit

 $N_{i,c,Rd} = \Sigma F_{c,Rd}^* = 164.5 \text{ kN}$

2.2.3.3.2. Abscher-/Lochleibungstragfähigkeit

Tragfähigkeit je Schraubenreihe

Reihe 1: $F_{vr,Rd} = 14.6 \text{ kN}$ Reihe 2: $F_{vr,Rd} = 14.6 \text{ kN}$ $\Sigma F_{vr,Rd} = 29.1 \text{ kN}$

Abscher-/Lochleibungstragfähigkeit

 $V_{i,Rd} = \Sigma F_{vr,Rd} = 29.1 \text{ kN}$

2.2.3.3.3. Schubtragfähigkeit

Schubtragfähigkeit des Stirnblechs

Stirnblech: $V_{ep,Rd} = 126.72 \text{ kN}$ Schweißnähte: Fw,Rd = 116.48 kN

Schubtragfähigkeit des Stirnblechs: Vep,Rd = Fw,Rd = 116.48 kN

Schubtragfähigkeit des Stützenstegs

 $V_{wp,Rd} = 82.2 \text{ kN}$

2.2.3.3.4. Gesamt

 $M_{j,Rd} = 4.2 \text{ kNm}$ $N_{j,t,Rd} = 73.5 \text{ kN}$ $N_{j,c,Rd} = 164.5 \text{ kN}$ $V_{j,Rd} = 29.1 \text{ kN}$ $V_{wp,Rd} = 82.2 \text{ kN}$ $V_{ep,Rd} = 116.5 \text{ kN}$

2.2.3.4. Nachweise

2.2.3.4.1. Nachweis der Anschlusstragfähigkeit mit der Komponentenmethode

Biegemoment: MEd = Md = 5.60 kNmQuerkraft: $V_{Ed} = |V_d| = 40.00 \text{ kN}$

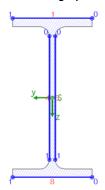
Schubkraft: $V_{c,w,Ed} = M_d/z - (V_{c1}-V_{c2})/2 = 77.05 \text{ kN}, z = 72.7 \text{ mm}$

Schubkraft: $V_{b,w,Ed} = 40.00 \text{ kN}$

 $MEd/M_{j,Rd} = 1.339 > 1$ nicht ok !! $V_{Ed}/V_{j,Rd} = 1.374 > 1$ nicht ok !! $V_{c,w,Ed}/V_{wp,Rd} = 0.937 < 1 \text{ ok}$ $V_{b,w,Ed}/V_{ep,Rd} = 0.343 < 1 \text{ ok}$

2.2.3.4.2. Nachweis der Schweißnähte am Trägerprofil

Naht 1: Trägerflansch mit Zug außen Nähte 2,3: Trägerflansch mit Zug innen Nähte 4,5: Trägersteg beidseitig Nähte 6,7: Trägerflansch mit Druck innen Naht 8: Trägerflansch mit Druck außen


Naht 2: wirksame Nahtlänge leff = 20.8 mm < 30 mm ⇒ statisch nicht wirksam !!

Naht 2: wirksame Nahtlänge leff = 20.8 mm < 6·a = 24.0 mm ⇒ statisch nicht wirksam !!

Naht 6: wirksame Nahtlänge leff = 20.8 mm < 30 mm ⇒ statisch nicht wirksam !!

Naht 6: wirksame Nahtlänge leff = 20.8 mm < 6·a = 24.0 mm ⇒ statisch nicht wirksam !!

Berechnungsquerschnitt:

Naht 1: $a_w = 4.0 \text{ mm}$ $l_w = 60.0 \text{ mm}$ $l_w = 93.4 \text{ mm}$ Naht 4: $a_w = 3.0 \text{ mm}$

Naht 5: siehe Naht 4

 $a_{w} = 4.0 \text{ mm}$ $l_{\rm W} = 60.0 \, \rm mm$ Naht 8:

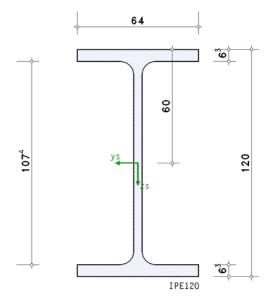
Bemessungsgrößen bezogen auf den Schwerpunkt des Profils:

 $M_{V,Ed} = -5.60 \text{ kNm}, V_{z,Ed} = 40.00 \text{ kN}$

Querschnittswerte bezogen auf den Schwerpunkt des Linienquerschnitts:

 $\Sigma A_w = 10.40 \text{ cm}^2$, $A_{w,z} = 5.60 \text{ cm}^2$, $\Sigma I_w = 30.7 \text{ cm}$ $I_{w,y} = 213.54 \text{ cm}^4$, $I_{w,z} = 14.67 \text{ cm}^4$, $\Delta z_w = 0.0 \text{ mm}$

Nachweise in den Endpunkten der Nähte:


```
75% Spannungsabtrag über Druckkontakt
                                                                                              \Rightarrow U<sub>w</sub> = 0.618 < 1 ok
Naht 1,
             Pkt. 0: \sigma_{w,x} = 157.35 \text{ N/mm}^2
              Pkt. 0: \sigma_{w,x} = 122.47 \text{ N/mm}^2
                                                           \tau_{w,z} = 71.38 \text{ N/mm}^2
                                                                                             \Rightarrow U<sub>w</sub> = 0.591 < 1 ok
Naht 4,
              Pkt. 1: \sigma_{w,x} = -30.62 \text{ N/mm}^2
                                                           \tau_{W,z} = 71.38 \text{ N/mm}^2
                                                                                             \Rightarrow U<sub>w</sub> = 0.364 < 1 ok
Naht 8,
             Pkt. 0: \sigma_{w,x} = -39.34 \text{ N/mm}^2
                                                                                              \Rightarrow U<sub>w</sub> = 0.155 < 1 ok
Ergebnis:
Naht 1,
             Pkt. 0: \sigma_{w,x} = 157.35 \text{ N/mm}^2
             \sigma_{1,w,Ed} = 222.52 \text{ N/mm}^2 < f_{1w,d} = 360.00 \text{ N/mm}^2
Max:
              \sigma_{2,w,Ed} = 111.26 \text{ N/mm}^2 < f_{2w,d} = 259.20 \text{ N/mm}^2 \Rightarrow U_w = 0.618 < 1 \text{ ok}
2.2.3.4.3. Nachweis der Stegsteifen
Drucksteife (unten)
F_{c,Ed} = 77.05 \text{ kN}
Kräfte je Rippe
F = 0.5 \cdot F_{c,Ed} \cdot (b_{f-2} \cdot r \cdot t_{w})/b_{f} = 27.45 \text{ kN}, H = F \cdot e_{F}/e_{H} = 5.15 \text{ kN}
Voraussetzung: Steifen nicht beulgefährdet: Q-Klasse 1 ≤ 3 ok
Querschnitt am Flansch
Drucktragfähigkeit Nc,Rd = (A·fy) / γM0 = 36.28 kN
Bemessungsgröße: F_{Ed} = (F^2 + 3 \cdot H^2)^{1/2} = 28.86 \text{ kN}
F_{Ed} = 28.86 \text{ kN} < F_{Rd} = 36.28 \text{ kN} \implies U = 0.795 < 1 \text{ ok}
Querschnitt am Steg
Schubtragfähigkeit V_{Rd} = (A_v \cdot f_y) / (3^{1/2} \cdot \gamma_{M0}) = 93.78 \text{ kN}
Bemessungsgröße: FEd = F = 27.45 kN
F_{Ed} = 27.45 \text{ kN} < F_{Rd} = 93.78 \text{ kN} \implies U = 0.293 < 1 \text{ ok}
Schweißnähte am Flansch
Bemessungsgrößen: F_{Ed}(\sigma_s) = F / (2 \cdot b_1) = 711.11 \text{ kN/m}, F_{Ed}(\tau_p) = H / (2 \cdot b_1) = 133.42 \text{ kN/m}, b_1 = 19.3 \text{ mm}
75% Spannungsabtrag über Druckkontakt
\sigma_{1,w,Ed} = 46.73 \text{ N/mm}^2 < f_{1w,d} = 360.00 \text{ N/mm}^2 \Rightarrow U = 0.130 < 1 \text{ ok}
\sigma_{2,w,Ed} = 44.44 \text{ N/mm}^2 < f_{2w,d} = 259.20 \text{ N/mm}^2 \Rightarrow U = 0.171 < 1 \text{ ok}
Schweißnähte am Steg
Bemessungsgröße: F_{Ed}(\tau_p) = F / (2 \cdot I_1) = 158.85 \text{ kN/m}, I_1 = 86.4 \text{ mm}
75% Spannungsabtrag über Druckkontakt
Nahtdicke a = 4.0 mm > a<sub>max</sub> = 0.7·t<sub>min</sub> = 3.1 mm (Schweisstechnik, s. DIN 18800) !!
\sigma_{1,w,Ed} = 17.20 \text{ N/mm}^2 < f_{1w,d} = 360.00 \text{ N/mm}^2 \Rightarrow U = 0.048 < 1 \text{ ok}
Zugsteife (oben)
F_{t,Ed} = 77.05 \text{ kN}
Kräfte je Rippe
F = 0.5 \cdot F_{t,Ed} \cdot (b_{f-2} \cdot r - t_{w})/b_{f} = 27.45 \text{ kN}, H = F \cdot e_{F}/e_{H} = 5.15 \text{ kN}
Querschnitt am Flansch
Zugtragfähigkeit Nt.Rd = 36.28 kN
Bemessungsgröße: F_{Ed} = (F^2 + 3 \cdot H^2)^{1/2} = 28.86 \text{ kN}
F_{Ed} = 28.86 \text{ kN} < F_{Rd} = 36.28 \text{ kN} \implies U = 0.795 < 1 \text{ ok}
Querschnitt am Steg
Schubtragfähigkeit V_{Rd} = (A_v \cdot f_y) / (3^{1/2} \cdot \gamma_{M0}) = 93.78 \text{ kN}
Bemessungsgröße: F_{Ed} = F = 27.45 \text{ kN}
F_{Ed} = 27.45 \text{ kN} < F_{Rd} = 93.78 \text{ kN} \implies U = 0.293 < 1 \text{ ok}
Schweißnähte am Flansch
Bemessungsgrößen: FEd(\sigma_8) = F/(2 \cdot b_1) = 711.11 \text{ kN/m}, FEd(\tau_p) = H/(2 \cdot b_1) = 133.42 \text{ kN/m}, b_1 = 19.3 \text{ mm}
\sigma_{1,w,Ed} = 186.93 \text{ N/mm}^2 < f_{1w,d} = 360.00 \text{ N/mm}^2 \Rightarrow U = 0.519 < 1 \text{ ok}
\sigma_{2,w,Ed} = 177.78 \text{ N/mm}^2 < f_{2w,d} = 259.20 \text{ N/mm}^2 \Rightarrow U = 0.686 < 1 \text{ ok}
Schweißnähte am Steg
Bemessungsgröße: F_{Ed}(\tau_p) = F / (2 \cdot l_1) = 158.85 \text{ kN/m}, l_1 = 86.4 \text{ mm}
Nahtdicke a = 4.0 mm > a<sub>max</sub> = 0.7·t<sub>min</sub> = 3.1 mm (Schweisstechnik, s. DIN 18800) !!
\sigma_{1,w,Ed} = 68.78 \text{ N/mm}^2 < f_{1w,d} = 360.00 \text{ N/mm}^2 \Rightarrow U = 0.191 < 1 \text{ ok}
```

2.2.3.4.4. Nachweisergebnis

Maximale Ausnutzung: max U = 1.374 > 1 nicht ok!! Versagen beim Nachweis für Biegung: U = 1.339 Versagen beim Nachweis für Abscheren/Lochleibung: U = 1.374

2.3. Lasteinleitung in die Konsole (GZT)

Sonderprobleme nach Eurocode 3 EC 3-1-5 (10.19), NA: Deutschland

Voraussetzung: Flanschinduziertes Stegbeulen ist ausgeschlossen.

Voraussetzung: Platten-/Schubbeulen ist ausgeschlossen.

2.3.1. Ergebnistabelle

Lk	Fz,Ed	V_{Ed}	U_{σ}	U_b	Ui	U
	kΝ	kΝ				
1	40.00	40.00	0.828	0.575	0.884	0.884*

 $F_{Z,Ed}$: vertikale Einzellast aus einem Lastträger; V_{Ed} : Bemessungsgrößen im Querschnitt; U_{σ} : Ausnutzung aus Spannungen am Steganschnitt U_{b} : Ausnutzung aus Querlastbeulen; U_{i} : Ausnutzung aus Interaktion; U: Ausnutzung aus Lasteinleitung *) maximale Ausnutzung

2.3.2. Endergebnis

Maximale Ausnutzung [Lk 1]: max U = 0.884 < 1 ok

2.3.3. Lk 1 (maßgebend)

Querschnittswerte: $A = 13.21 \text{ cm}^2$, $z_s = 60.0 \text{ mm}$, $l_y = 317.76 \text{ cm}^4$, $y_s = 0.0 \text{ mm}$, $l_z = 27.67 \text{ cm}^4$

Lasteinzugsbreite durch den Träger ss' = 2·tf + tw + 1.172·r = 25.2 mm

Zur Info: Lagerpressung $F_{z,Ed,GZT}/(s_s \cdot s_s') = 52.91 \text{ N/mm}^2$

wirksame Lasteinleitungslänge leff = ss + 2·tf = 42.6 mm

Länge der starren Lasteinleitung:

bezogen auf die Flanschaußenkante ss = leff - 2·tf = 30.0 mm / auf den Steganschnitt sw = leff + 2·r = 56.6 mm

2.3.3.1. Stegpressung (GZT)

zulässige Spannungen: $\sigma_{Rd} = f_y/\gamma_{M0} = 235.0 \text{ N/mm}^2$, $\tau_{Rd} = f_y/(3^{1/2} \cdot \gamma_{M0}) = 135.7 \text{ N/mm}^2$

Einzellastpressung am Steganschnitt:

lokale Spannungen σoz,Ed = -160.6 N/mm²

 $|\sigma_{oz,Ed}| = 160.6 \text{ N/mm}^2 < \sigma_{Rd} = 235.0 \text{ N/mm}^2 \Rightarrow U = 0.683 < 1 \text{ ok}$

Spannungen am Steganschnitt:

Querbelastung Fz,Ed = 40.0 kN

Schubbeulen: $h_p/t_p = 24.41 \le 72 \cdot \epsilon/\eta = 60.00$ ok

Lk 1: $V_{z,Ed} = 40.0 \text{ kN}$

Spannungen Txz,Ed = 63.4 N/mm²

 $|\tau_{XZ,Ed}| = 63.4 \ N/mm^2 \ < \ \tau_{Rd} = 135.7 \ N/mm^2 \ \Rightarrow \ U = 0.468 \ < \ 1 \ \ ok$

 $\sigma_V = 194.6 \ N/mm^2 \ < \ \sigma_{Rd} = 235.0 \ N/mm^2 \ \Rightarrow \ U = 0.828 \ < \ 1 \ ok$

Ausnutzung am Steganschnitt max $U_{\sigma} = 0.828 < 1$ ok

Maximale Ausnutzung: max U = 0.828 < 1 ok

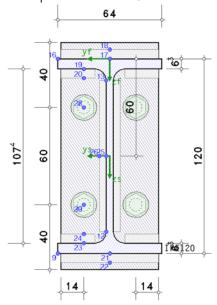
2.3.3.2. Querlastbeulen (GZT)

Schlankheitsgrad $\lambda_F = (F_y/F_{cr})^{1/2} = 0.326$, $F_y = 76.5$ kN

Abminderungsfaktor $\chi_F = 1.000$

Beulwiderstand $F_{z,Rd} = f_y \cdot L_{eff} \cdot t_w / \gamma_{M1} = 69.59 \text{ kN}, L_{eff} = \chi_F \cdot l_y = 74.0 \text{ mm}, l_y = 74.0 \text{ mm}$

Nachweis: $F_{z,Ed}/F_{z,Rd} = 0.575 < 1$ ok


Interaktion (ohne Platten-/Schubbeulen):

Querbelastung und Vergleichsspannung $(\eta_2 + 0.8 \cdot \eta_1) / 1.4 = 0.884 < 1$ ok

2.4. Ermüdung der Verbindung Konsole-Stütze (GZE)

Sonderprobleme nach Eurocode 3 EC 3-1-9 (12.10), NA: Deutschland

Kerbfälle / zul. Kerbspannungen bei N = 2·10⁶ Schwingspielen:

Pkt	Уf	Zf	Δσ _x ,Rd	∆ τ Rd	Δσz,Rd	Kerbpunkt	EC 3-1-9, Tab.
INC	mm	mm	N/mm ²	N/mm²	N/mm ²	Ker bpanke	20 3 1 3, 145.
9	32.0	120.0	160.0	0.0	0.0	am Untergurt	8.1(2)
12	2.2	106.7	160.0	100.0	0.0	am Trägersteg	8.1(2) 8.1(6)
13	2.2	13.3	160.0	100.0	160.0	am Trägersteg	8.1(2) 8.1(6) 8.10(1)
16	32.0	0.0	160.0	0.0	0.0	am Obergurt	8.1(2)
° 17	0.0	0.0	36.0	0.0	0.0	am Blech (Obergurt)	8.5(3)
18	0.0	-5.7	80.0	0.0	0.0	am Blech (Obergurt)	8.5(1)
° 19	16.0	6.3	36.0	0.0	0.0	am Blech (Obergurt)	8.5(3)
20	16.0	12.0	80.0	0.0	0.0	am Blech (Obergurt)	8.5(1)
° 21	0.0	120.0	36.0	0.0	0.0	am Blech (Untergurt)	8.5(3)
22	0.0	125.7	80.0	0.0	0.0	am Blech (Untergurt)	8.5(1)
° 23	16.0	113.7	36.0	0.0	0.0	am Blech (Untergurt)	8.5(3)
24	16.0	108.0	80.0	0.0	0.0	am Blech (Untergurt)	8.5(1)
° 25	2.2	60.0	36.0	80.0	0.0	am Blech (Steg)	8.5(3) 8.5(8)
26	6.4	60.0	0.0	100.0	0.0	am Blech (Steg)	8.2(5)
x 27	16.0	30.0	50.0	100.0	0.0	am Blech	8.1(14) 8.1(15)
28	16.0	30.0	90.0	0.0	0.0	am Blech	8.1(10)
x 29	16.0	90.0	50.0	100.0	0.0	am Blech	8.1(14) 8.1(15)
30	16.0	90.0	90.0	0.0	0.0	am Blech	8.1(10)

^{°:} Nachweis der Schweißnaht, x: Nachweis der Schraube

Belastung

2.4.1. Ermüdungsnachweis

Schraubenabstände am Stirnblech:

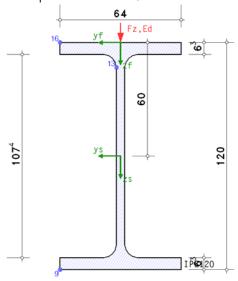
horizontal: $e_2 = 14.0 \text{ mm} > 1.5 \cdot d_0 = 13.5 \text{ mm}$ horizontal: $p_2 = 32.0 \text{ mm} > 2.5 \cdot d_0 = 22.5 \text{ mm}$ vertikal: $e_1 = 40.0 \text{ mm} > 1.5 \cdot d_0 = 13.5 \text{ mm}$ vertikal: $e_1 = 60.0 \text{ mm} > 2.5 \cdot d_0 = 22.5 \text{ mm}$ vertikal: $e_1 = 40.0 \text{ mm} > 1.5 \cdot d_0 = 13.5 \text{ mm}$

Querschnittswerte: $A = 13.21 \text{ cm}^2$, $z_s = 60.0 \text{ mm}$, $l_y = 317.76 \text{ cm}^4$, $y_s = 0.0 \text{ mm}$, $l_z = 27.67 \text{ cm}^4$

Spannungsschwingbreiten:

Pkt. 27: $y_f = 16.0 \text{ mm}, z_f = 30.0 \text{ mm}$ $\Delta \sigma_{x,Ed} = 128.5 \text{ N/mm}^2$ $\Delta \tau_{Ed} = 49.7 \text{ N/mm}^2$

Spannungsschwingbreiten infolge Ermüdung:


Pkt. 27: $y_f = 16.0 \text{ mm}, z_f = 30.0 \text{ mm}$ $\Delta \sigma_{x,f} = 38.5 \text{ N/mm}^2$ $\Delta \tau_f = 14.9 \text{ N/mm}^2$

Nachweis der Kerbspannungen:

Pkt. 27: y = 16.0 mm, z = 30.0 mm $\Delta \sigma_{x,f} = 38.5 \text{ N/mm}^2 < \Delta \sigma_{x,Rd,f} = 43.5 \text{ N/mm}^2 \Rightarrow U_{\Delta \sigma x} = 0.887 \text{ ok}$ $\Delta \tau_f = 14.9 \text{ N/mm}^2 < \Delta \tau_{Rd,f} = 87.0 \text{ N/mm}^2 \Rightarrow U_{\Delta \tau} = 0.172 \text{ ok}$

2.5. Ermüdung des Konsolprofils (GZE)

Sonderprobleme nach Eurocode 3 EC 3-1-9 (12.10), NA: Deutschland

Kerbfälle / zul. Kerbspannungen bei N = 2·10⁶ Schwingspielen:

Pkt	Уf	Zf	Δισx,Rd	∆τ Rd	Δσz,Rd	Kerbpunkt	EC 3-1-9, Tab.
	mm	mm	N/mm²	N/mm^2	N/mm²		
9	32.0	120.0	160.0	0.0	0.0	am Untergurt	8.1(2)
13	2.2	13.3	160.0	100.0	160.0	am Trägersteg	8.1(2) 8.1(6) 8.10(1)
16	32.0	0.0	160.0	0.0	0.0	am Obergurt	8.1(2)

Belastung

Lk 1: $V_{z,Ed} = 5.00 \text{ kN}$ Lk 2: $V_{z,Ed} = 15.00 \text{ kN}$

Querbelastung auf dem Obergurt: vertikale Einzellast Fz,Ed = 15.0 kN

2.5.1. Ermüdungsnachweis

Querschnittswerte: $A = 13.21 \text{ cm}^2$, $z_s = 60.0 \text{ mm}$, $l_y = 317.76 \text{ cm}^4$, $y_s = 0.0 \text{ mm}$, $l_z = 27.67 \text{ cm}^4$

wirksame Lasteinleitungslänge leff = ss + 2·tf = 42.6 mm ... am Trägersteg σ_{oz} = -60.2 N/mm², τ_{o} = 12.0 N/mm²

Spannungsschwingbreiten:

 $\Delta \tau Ed = 42.3 \text{ N/mm}^2$ Pkt. 13: $y_f = 2.2 \text{ mm}, z_f = 13.3 \text{ mm}$ $\Delta \sigma_{z,Ed} = 60.2 \text{ N/mm}^2$

Spannungsschwingbreiten infolge Ermüdung:

Pkt. 13: $y_f = 2.2 \text{ mm}, z_f = 13.3 \text{ mm}$ $\Delta \tau_f = 12.7 \text{ N/mm}^2$ $\Delta \sigma_{z,f} = 18.1 \text{ N/mm}^2$

Nachweis der Kerbspannungen:

Pkt. 13: y = 2.2 mm, z = 13.3 mm $\Delta \tau_f = 12.7 \text{ N/mm}^2 < \Delta \tau_{Rd,f} = 87.0 \text{ N/mm}^2$ \Rightarrow $U_{\Delta \tau} = 0.146$ ok $\Delta \sigma_{z,f} = 18.1 \text{ N/mm}^2 < \Delta \sigma_{z,Rd,f} = 139.1 \text{ N/mm}^2 \Rightarrow U_{\Delta \sigma z} = 0.130 \text{ ok}$

Ermüdungsnachweis [Pkt. 13]: max U = 0.146 < 1 ok

3. Nachweise links

3.1. Ergebnistabelle (GZT)

3.1.1. Ausnutzungen je Anschlussseite

Lk	Uj	U ₁	Uj,b	Uj,σ	Uj,τ	$U_\mathtt{j,w}$	Uj,r	U1,σ	U1,r	U
1	0.434	0.616	0.434	0.381	0.303	0.258	0.324	0.616	0.453	0.616*

 $oldsymbol{\mathsf{U}}_{||}$ res. Ausnutzung aus Träger-Stütze-Anschluss; $oldsymbol{\mathsf{U}}_{||}$ res. Ausnutzung aus Lasteinleitung; $oldsymbol{\mathsf{U}}_{||}$ b: Querschnittsausnutzung Träger $\mathbf{U}_{j,\sigma}$: Ausnutzung aus Biegung; $\mathbf{U}_{j,\tau}$: Ausnutzung aus Querkraft; $\mathbf{U}_{j,w}$: Ausnutzung aus Schweißnaht

Uj,r: Ausnutzung aus Steifen/Rippen; Uj,o: Ausnutzung aus Spannungen am Steganschnitt; Uj,r: Ausnutzung aus Rippen U: Ausnutzung je Anschlussseite; U: Ausnutzung je Anschlussseite *) maximale Ausnutzung je Anschlussseite

3.2. Anschluss an die Stütze (GZT)

Biegesteifer Trägeranschluss EC 3-1-8 (12.10), NA: Deutschland

Der Anschluss der Voute an den Träger wird nicht nachgewiesen.

Die Schweißnähte des geschweißten Profils werden nicht nachgewiesen.

Datencheck

ok

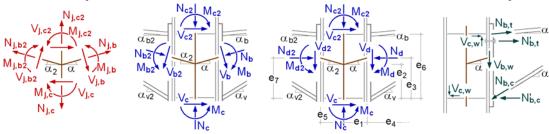
3.2.1. Ergebnistabelle

Ausnutzung

Lk	U _{o,b}	Um	U_{wp}	U_{cf}	U_{sb}	Uss	U
1	0.434	0.381	0.303	0.256	0.258	0.324	0.434*

 $U_{\sigma,b}$: Spannungsausnutzung am Träger; U_m : Ausnutzung aus Biegung; U_{wp} : Ausnutzung aus Schub im Stützensteg $m U_{cl}$: Ausnutzung aus Schub im Stützenflansch; $m U_{sb}$: Ausnutzung aus Schweißnaht; $m U_{ss}$: Ausnutzung aus Steifen/Rippen U: Ausnutzung der Verbindung

3.2.2. Endergebnis


Maximale Ausnutzung: max U = 0.434 < 1 ok

3.2.3. Lk 1 (maßgebend)

3.2.3.1. Bemessungsgrößen

Knotenschnittgrößen Anschnitt Anschluss ⊥ zur Anschlussebene

Neigungswinkel: $\alpha_b = 0.00^\circ$, $\alpha_V = 18.43^\circ \Rightarrow \alpha = (\alpha_b + \alpha_V)/2 = 9.22^\circ$ Abstände: $e_1 = 60.0 \text{ mm}$, $e_3 = 83.9 \text{ mm}$, $e_2 = 74.2 \text{ mm}$, $e_6 = 163.5 \text{ mm}$

Schnittgrößen senkrecht zu den Anschlussebenen

Anschnitt Träger

 $N_d = -12.65 \ kN, \ M_d = 4.00 \ kNm, \ V_d = 37.95 \ kN$

Teilschnittgrößen

 $N_{b,t} = -N_d \cdot z_{bu}/z_b + M_d/z_b = 30.70 \text{ kN}, z_b = 163.5 \text{ mm}, z_{bu} = 80.6 \text{ mm}$

 $N_{b,c} = (N_d \cdot z_{bo}/z_b + M_d/z_b) / \cos(\alpha_V) = 19.02 \text{ kN}, z_b = 163.5 \text{ mm}, z_{bo} = 82.9 \text{ mm}$

 $V_{b,t} = -N_{b,t} \cdot \sin(\alpha_b) = 0.00 \text{ kN}, \ V_{b,c} = N_{b,c} \cdot \sin(\alpha_v) = 6.02 \text{ kN}, \ V_{b,w} = V_d - V_{b,t} - V_{b,c} = 31.93 \text{ kN}$

3.2.3.2. Querschnittstragfähigkeit im Anschnitt

elastischer Spannungsnachweis für N = 12.65 kN, My = -4.00 kNm, Vz = 37.95 kN Nachweis: $\sigma_V = 102.01 \text{ N/mm}^2 < \sigma_{V,Rd} = 235.00 \text{ N/mm}^2 \Rightarrow U_{\sigma} = 0.434 < 1 \text{ ok}$

c/t-Verhältnis: einseitig gestützt: Ausnutzung $U_{c/t} = 0.112 < 1$ ok

beidseitig gestützt: Ausnutzung Uc/t = 0.110 < 1 ok

3.2.3.3. Anschlusstragfähigkeit

Übertragungsparameter: $\beta_i = 1.00$

3.2.3.3.1. Biegetragfähigkeit

Abstand der Zugkraft vom Druckpunkt: z = 163.5 mm

Tragfähigkeit

 $F_{Rd} = 80.6 \text{ kN}$

Tragfähigkeit der Flansche (Druck)

 $\Sigma F_{c,Rd}^{*} = 161.3 \text{ kN}$

Biegetragfähigkeit

 $M_{j,Rd} = F_{Rd} \cdot z = 13.2 \text{ kNm}$

^{*)} maximale Ausnutzung

Zugtragfähigkeit

 $N_{j,t,Rd} = F_{t,Rd} = 120.3 \text{ kN}$

Drucktragfähigkeit

 $N_{i,c,Rd} = \Sigma F_{c,Rd}^* = 161.3 \text{ kN}$

3.2.3.3.2. Schubtragfähigkeit

Schubtragfähigkeit des Stützenflanschs

 $V_{cf,Rd} = 124.58 \text{ kN}$

Schubtragfähigkeit des Stützenstegs

 $V_{wp,Rd} = 80.6 \text{ kN}$

3.2.3.3.3. Gesamt

 $M_{j,Rd} = 13.2 \text{ kNm} \quad N_{j,t,Rd} = 120.3 \text{ kN} \quad N_{j,c,Rd} = 161.3 \text{ kN} \quad V_{wp,Rd} = 80.6 \text{ kN} \quad V_{cf,Rd} = 124.6 \text{ kN}$

3.2.3.4. Nachweise

3.2.3.4.1. Nachweis der Anschlusstragfähigkeit mit der Komponentenmethode

Normalkraft: $N_{b,Ed} = |N_{d} \cdot \cos(\alpha) + V_{d} \cdot \sin(\alpha)| = 6.41 \text{ kN} < 5\% \cdot N_{pl,Rd} = 17.85 \text{ kN} \Rightarrow \text{Biegetragfähigkeit}$

Biegemoment: $MEd = Md - Nd \cdot Zbu = 5.02 \text{ kNm}, Zbu = 80.6 \text{ mm}$

Querkraft: $V_{Ed} = |V_d| = 37.95 \text{ kN}$

Schubkraft: $V_{c,w,Ed} = M_d/z - (V_{c1}-V_{c2})/2 = 24.46 \text{ kN}, z = 163.5 \text{ mm}$

Schubkraft: $V_{b,w,Ed} = 31.93 \text{ kN}$

3.2.3.4.2. Nachweis der Schweißnähte am Trägerprofil

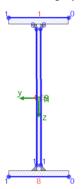
Naht 1: Trägerflansch mit Zug außen
Nähte 2,3: Trägerflansch mit Zug innen
Nähte 4,5: Trägersteg beidseitig

Naht 8: Trägerflansch mit Druck außen

Nähte 6,7: Trägerflansch mit Druck innen

Naht 1: Nahtdicke $a = 5.0 \text{ mm} > a_{\text{max}} = 0.7 \cdot t_{\text{min}} = 4.4 \text{ mm}$ (Schweisstechnik, s. DIN 18800) !!

Naht 2: Nahtdicke a = 5.0 mm > a_{max} = 0.7·t_{min} = 4.4 mm (Schweisstechnik, s. DIN 18800) !!


Naht 2: wirksame Nahtlänge leff = 24.1 mm < 30 mm ⇒ statisch nicht wirksam !!

Naht 2: wirksame Nahtlänge leff = 24.1 mm < 6·a = 30.0 mm ⇒ statisch nicht wirksam !!

Naht 4: Nahtdicke a = 4.0 mm > a_{max} = 0.7·t_{min} = 3.1 mm (Schweisstechnik, s. DIN 18800) !!

Naht 6: wirksame Nahtlänge leff = 24.1 mm < 30 mm ⇒ statisch nicht wirksam !!

Berechnungsquerschnitt:

Naht 1: $a_W = 5.0 \text{ mm}$ $l_W = 64.0 \text{ mm}$ Naht 4: $a_W = 4.0 \text{ mm}$ $l_W = 145.7 \text{ mm}$

Naht 5: siehe Naht 4

Naht 8: $a_W = 4.0 \text{ mm}$ $l_W = 64.0 \text{ mm}$

Bemessungsgrößen bezogen auf den Schwerpunkt des Profils:

 $N_{Ed} = 12.65 \text{ kN}, M_{y,Ed} = -4.00 \text{ kNm}, V_{z,Ed} = 37.95 \text{ kN}$

Querschnittswerte bezogen auf den Schwerpunkt des Linienquerschnitts:

 $\Sigma A_W = 17.42 \text{ cm}^2$, $A_{W,z} = 11.66 \text{ cm}^2$, $\Sigma I_W = 41.9 \text{ cm}$ $I_{W,y} = 620.73 \text{ cm}^4$, $I_{W,z} = 20.23 \text{ cm}^4$, $\Delta z_W = -4.3 \text{ mm}$

Nachweise in den Endpunkten der Nähte:

75% Spannungsabtrag über Druckkontakt

Naht 8, Pkt. 0: $\sigma_{W,X} = -12.40 \text{ N/mm}^2$ $\Rightarrow U_W = 0.049 < 1 \text{ ok}$

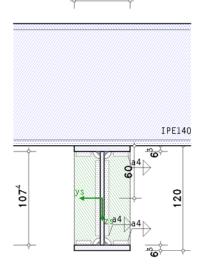
Ergebnis:

Naht 4, Pkt. 0: $\sigma_{w,x} = 52.24 \text{ N/mm}^2$ $\tau_{w,z} = 32.55 \text{ N/mm}^2$ Max: $\sigma_{1,w,Ed} = 92.93 \text{ N/mm}^2 < f_{1w,d} = 360.00 \text{ N/mm}^2$,

 $\sigma_{2,w,Ed} = 36.94 \ N/mm^2 \ < \ f_{2w,d} = 259.20 \ N/mm^2 \ \Rightarrow \ U_w = 0.258 \ < \ 1 \ \ ok$

Nachweis der Umlenkkräfte (richtungsbezogenes Verfahren)

Schweißnähte Druckflansch


```
Druckkraft Nb.c = 4.8 kN
Schweißnahtwinkel \varphi = 108.4^{\circ}:
\sigma_{1,w,Ed} = 13.74 \text{ N/mm}^2 < f_{1w,d} = 360.00 \text{ N/mm}^2 \Rightarrow U = 0.038 < 1 \text{ ok}
\sigma_{2,w,Ed} = 8.59 \text{ N/mm}^2 < f_{2w,d} = 259.20 \text{ N/mm}^2 \Rightarrow U = 0.033 < 1 \text{ ok}
Schweißnahtwinkel \varphi = 71.6^{\circ}:
\sigma_{1,w,Ed} = 16.12 \text{ N/mm}^2 < f_{1w,d} = 360.00 \text{ N/mm}^2 \Rightarrow U = 0.045 < 1 \text{ ok}
\sigma_{2,w,Ed} = 6.19 \text{ N/mm}^2 < f_{2w,d} = 259.20 \text{ N/mm}^2 \Rightarrow U = 0.024 < 1 \text{ ok}
3.2.3.4.3. Nachweis der Stegsteifen
Drucksteife (unten)
F_{c,Ed} = 18.78 \text{ kN}
Kräfte je Rippe
F = 0.5 \cdot F_{c,Ed} \cdot (b_f - 2 \cdot r - t_w)/b_f = 6.69 \text{ kN}, H = F \cdot e_f/e_H = 1.26 \text{ kN}
Voraussetzung: Steifen nicht beulgefährdet: Q-Klasse 1 ≤ 3 ok
Querschnitt am Flansch
Drucktragfähigkeit N<sub>c,Rd</sub> = (A·f<sub>y</sub>) / γ<sub>M0</sub> = 36.28 kN
Bemessungsgröße: F_{Ed} = (F^2 + 3 \cdot H^2)^{1/2} = 7.03 \text{ kN}
F_{Ed} = 7.03 \text{ kN} < F_{Rd} = 36.28 \text{ kN} \implies U = 0.194 < 1 \text{ ok}
Querschnitt am Steg
Schubtragfähigkeit V_{Rd} = (A_v \cdot f_y) / (3^{1/2} \cdot \gamma_{M0}) = 93.78 \text{ kN}
Bemessungsgröße: FEd = F = 6.69 kN
F_{Ed} = 6.69 \text{ kN} < F_{Rd} = 93.78 \text{ kN} \implies U = 0.071 < 1 \text{ ok}
Schweißnähte am Flansch
Bemessungsgrößen: FEd(\sigma_S) = F / (2 \cdot b_1) = 173.32 \text{ kN/m}, FEd(\tau_P) = H / (2 \cdot b_1) = 32.52 \text{ kN/m}, b_1 = 19.3 \text{ mm}
75% Spannungsabtrag über Druckkontakt
\sigma_{1,w,Ed} = 11.39 \text{ N/mm}^2 < f_{1w,d} = 360.00 \text{ N/mm}^2 \Rightarrow U = 0.032 < 1 \text{ ok}
\sigma_{2,w,Ed} = 10.83 \text{ N/mm}^2 < f_{2w,d} = 259.20 \text{ N/mm}^2 \Rightarrow U = 0.042 < 1 \text{ ok}
Schweißnähte am Steg
Bemessungsgröße: F_{Ed}(\tau_p) = F / (2 \cdot l_1) = 38.72 \text{ kN/m}, l_1 = 86.4 \text{ mm}
75% Spannungsabtrag über Druckkontakt
Nahtdicke a = 4.0 mm > a<sub>max</sub> = 0.7·t<sub>min</sub> = 3.1 mm (Schweisstechnik, s. DIN 18800) !!
\sigma_{1,w,Ed} = 4.19 \text{ N/mm}^2 < f_{1w,d} = 360.00 \text{ N/mm}^2 \Rightarrow U = 0.012 < 1 \text{ ok}
Zugsteife (oben)
F_{t,Ed} = 31.43 \text{ kN}
Kräfte je Rippe
F = 0.5 \cdot F_{t,Ed} \cdot (b_{f} - 2 \cdot r - t_{w})/b_{f} = 11.20 \text{ kN}, H = F \cdot e_{F}/e_{H} = 2.10 \text{ kN}
Querschnitt am Flansch
Zugtragfähigkeit Nt,Rd = 36.28 kN
Bemessungsgröße: F_{Ed} = (F^2 + 3 \cdot H^2)^{1/2} = 11.77 \text{ kN}
F_{Ed} = 11.77 \text{ kN} < F_{Rd} = 36.28 \text{ kN} \implies U = 0.324 < 1 \text{ ok}
Querschnitt am Steg
Schubtragfähigkeit V_{Rd} = (A_v \cdot f_y) / (3^{1/2} \cdot \gamma_{M0}) = 93.78 \text{ kN}
Bemessungsgröße: Fed = F = 11.20 kN
F_{Ed} = 11.20 \text{ kN} < F_{Rd} = 93.78 \text{ kN} \implies U = 0.119 < 1 \text{ ok}
Schweißnähte am Flansch
Bemessungsgrößen: F_{Ed}(\sigma_s) = F / (2 \cdot b_1) = 290.06 \text{ kN/m}, F_{Ed}(\tau_p) = H / (2 \cdot b_1) = 54.42 \text{ kN/m}, b_1 = 19.3 \text{ mm}
\sigma_{1,w,Ed} = 76.25 \text{ N/mm}^2 < f_{1w,d} = 360.00 \text{ N/mm}^2 \Rightarrow U = 0.212 < 1 \text{ ok}
\sigma_{2,w,Ed} = 72.51 \text{ N/mm}^2 < f_{2w,d} = 259.20 \text{ N/mm}^2 \Rightarrow U = 0.280 < 1 \text{ ok}
Schweißnähte am Steg
Bemessungsgröße: F_{Ed}(\tau_p) = F / (2 \cdot l_1) = 64.79 \text{ kN/m}, l_1 = 86.4 \text{ mm}
Nahtdicke a = 4.0 mm > a<sub>max</sub> = 0.7·t<sub>min</sub> = 3.1 mm (Schweisstechnik, s. DIN 18800) !!
\sigma_{1,w,Ed} = 28.06 \text{ N/mm}^2 < f_{1w,d} = 360.00 \text{ N/mm}^2 \Rightarrow U = 0.078 < 1 \text{ ok}
```

3.2.3.4.4. Nachweisergebnis

Maximale Ausnutzung: max U = 0.434 < 1 ok

3.3. Lasteinleitung in die Konsole (GZT)

Sonderprobleme nach Eurocode 3 EC 3-1-5 (10.19), NA: Deutschland

Voraussetzung: Flanschinduziertes Stegbeulen ist ausgeschlossen.

Voraussetzung: Platten-/Schubbeulen ist ausgeschlossen.

Voraussetzung: Quersteifen dienen als starre Lagerung des Blechfelds.

Voraussetzung: Lokales Beulen der Steifen ist ausgeschlossen.

3.3.1. Ergebnistabelle

Lk	Fz,Ed	NEd	V_{Ed}	Ur	U_{σ}	U
	kN	kN	kΝ			
1	40.00	6.41	39.48	0.453	0.616	0.616*

Fz,Ed: vertikale Einzellast aus einem Lastträger; NEd,VEd: Bemessungsgrößen im Querschnitt; Ur: Ausnutzung aus Rippen U_{σ} : Ausnutzung aus Spannungen am Steganschnitt; U: Ausnutzung aus Lasteinleitung *) maximale Ausnutzung

3.3.2. Endergebnis

Maximale Ausnutzung [Lk 1]: max U = 0.616 < 1 ok

3.3.3. Lk 1 (maßgebend)

Querschnittswerte: $A = 12.79 \text{ cm}^2$, $z_s = 60.0 \text{ mm}$, $I_v = 306.31 \text{ cm}^4$, $y_s = 0.0 \text{ mm}$, $I_z = 27.60 \text{ cm}^4$

Lasteinzugsbreite durch den Träger ss' = 2·tf + tw + 2.828·aw = 28.3 mm

Lasteinzugslänge durch den Lastträger ss = 2·tf + tw + 1.172·r = 26.7 mm

Zur Info: Lagerpressung Fz,Ed,GZT/(Ss·Ss') = 52.91 N/mm²

wirksame Lasteinleitungslänge leff = ss + 2 tf = 39.3 mm

Länge der starren Lasteinleitung:

bezogen auf die Flanschaußenkante ss = leff - 2·tf = 26.7 mm / auf den Steganschnitt sw = leff = 39.3 mm

3.3.3.1. Stegpressung (GZT)

zulässige Spannungen: $\sigma_{Rd} = f_V/\gamma_{M0} = 235.0 \text{ N/mm}^2$, $\tau_{Rd} = f_V/(3^{1/2} \cdot \gamma_{M0}) = 135.7 \text{ N/mm}^2$

Lastübertragung durch Quersteifen (Rippen):

Kräfte je Rippe

 $F = 0.5 \cdot F_{c,Ed} = 20.00 \text{ kN}, H = F \cdot e_{F/eH} = 3.56 \text{ kN}$

Voraussetzung: Steifen nicht beulgefährdet: Q-Klasse 1 ≤ 3 ok

Hinweis: b_R > 25.8 mm ⇒ Umschweißung nicht möglich, auf Korrosionsschutz achten !!

Querschnitt am Flansch

Drucktragfähigkeit Nc,Rd = (A·fy) / γM0 = 50.09 kN

Bemessungsgröße: $F_{Ed} = (F^2 + 3 \cdot H^2)^{1/2} = 20.93 \text{ kN}$

 $F_{Ed} = 20.93 \text{ kN} < F_{Rd} = 50.09 \text{ kN} \implies U = 0.418 < 1 \text{ ok}$

Querschnitt am Steg

Schubtragfähigkeit $V_{Rd} = (A_v \cdot f_y) / (3^{1/2} \cdot \gamma_{M0}) = 122.69 \text{ kN}$

Bemessungsgröße: FEd = F = 20.00 kN

 $F_{Ed} = 20.00 \text{ kN} < F_{Rd} = 122.69 \text{ kN} \implies U = 0.163 < 1 \text{ ok}$

Schweißnähte am Flansch

Bemessungsgrößen: $F_{Ed}(\sigma_s) = F / (2 \cdot b_1) = 469.16 \text{ kN/m}, F_{Ed}(\tau_p) = H / (2 \cdot b_1) = 83.62 \text{ kN/m}, b_1 = 21.3 \text{ mm}$

 $\sigma_{1,w,Ed} = 122.75 \text{ N/mm}^2 < f_{1w,d} = 360.00 \text{ N/mm}^2 \Rightarrow U = 0.341 < 1 \text{ ok}$

 $\sigma_{2,w,Ed} = 117.29 \text{ N/mm}^2 < f_{2w,d} = 259.20 \text{ N/mm}^2 \Rightarrow U = 0.453 < 1 \text{ ok}$

Schweißnähte am Steg

Bemessungsgröße: $F_{Ed}(\tau_p) = F / (2 \cdot I_1) = 110.58 \text{ kN/m}, I_1 = 90.4 \text{ mm}$

Nahtdicke a = 4.0 mm > a_{max} = 0.7·t_{min} = 3.1 mm (Schweisstechnik, s. DIN 18800) !!

 $\sigma_{1,w,Ed} = 47.88 \text{ N/mm}^2 < f_{1w,d} = 360.00 \text{ N/mm}^2 \Rightarrow U = 0.133 < 1 \text{ ok}$ Gesamt: Ausnutzung der Rippen UR = 0.453 < 1 ok

Spannungen am Steganschnitt:

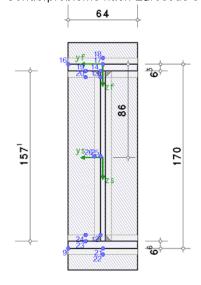
lokale Querspannungen σoz,Ed = 0 N/mm²

Lk 1: Ned = 6.4 kN, $V_{z,Ed} = 39.5 \text{ kN}$

Spannungen $\sigma_{x,Ed} = 5.0 \text{ N/mm}^2$, $\tau_{xz,Ed} = 83.6 \text{ N/mm}^2$

 $|\sigma_{x,Ed}| = 5.0 \text{ N/mm}^2 < \sigma_{Rd} = 235.0 \text{ N/mm}^2 \Rightarrow U = 0.021 < 1 \text{ ok}$

 $|\tau_{XZ,Ed}| = 83.6 \text{ N/mm}^2 < \tau_{Rd} = 135.7 \text{ N/mm}^2 \implies U = 0.616 < 1 \text{ ok}$


 $\sigma_V = 144.8 \text{ N/mm}^2 < \sigma_{Rd} = 235.0 \text{ N/mm}^2 \implies U = 0.616 < 1 \text{ ok}$

Ausnutzung am Steganschnitt max $U_{\sigma} = 0.616 < 1$ ok

Maximale Ausnutzung: max U = 0.616 < 1 ok

3.4. Ermüdung der Verbindung Konsole-Stütze (GZE)

Sonderprobleme nach Eurocode 3 EC 3-1-9 (12.10), NA: Deutschland

Kerbfälle / zul. Kerbspannungen bei N = 2·10⁶ Schwingspielen:

Pkt	Уf	Zf	∆oox,Rd	∆τ Rd	∆osz,Rd	Kerbpunkt	EC 3-1-9, Tab.
	mm	mm	N/mm²	N/mm²	N/mm²		
9	32.0	170.0	160.0	0.0	0.0	am Untergurt	8.1(1)
12	2.2	157.7	100.0	100.0	0.0	am Trägersteg	8.2(7) 8.1(6)
13	2.2	12.0	100.0	100.0	40.0	am Trägersteg	8.2(7) 8.1(6) 8.10(4)*
° 14	2.2	6.3	0.0	80.0	0.0	am Trägersteg	8.5(8)
16	32.0	0.0	160.0	0.0	0.0	am Obergurt	8.1(1)
° 17	0.0	0.0	36.0	0.0	0.0	am Blech (Obergurt)	8.5(3)
18	0.0	-5.7	80.0	0.0	0.0	am Blech (Obergurt)	8.5(1)
° 19	16.0	6.3	36.0	0.0	0.0	am Blech (Obergurt)	8.5(3)
20	16.0	12.0	80.0	0.0	0.0	am Blech (Obergurt)	8.5(1)
° 21	0.0	170.0	36.0	0.0	0.0	am Blech (Untergurt)	8.5(3)
22	0.0	175.7	80.0	0.0	0.0	am Blech (Untergurt)	8.5(1)
° 23	16.0	163.4	36.0	0.0	0.0	am Blech (Untergurt)	8.5(3)
24	16.0	157.7	80.0	0.0	0.0	am Blech (Untergurt)	8.5(1)
° 25	2.2	85.0	36.0	80.0	0.0	am Blech (Steg)	8.5(3) 8.5(8)
26	7.9	85.0	0.0	100.0	0.0	am Blech (Steg)	8.2(5)

 $^{^{\}circ}$: Nachweis der Schweißnaht, * : Kerbspannung $\Delta\sigma_{Z,Rd}$ um eine Kategorie erhöht

Belastung

Lk 1: $M_{y,Ed} = -0.50 \text{ kNm}, V_{z,Ed} = 5.00 \text{ kN}$ Lk 2: $M_{y,Ed} = -1.49 \text{ kNm}, V_{z,Ed} = 15.00 \text{ kN}$

3.4.1. Ermüdungsnachweis

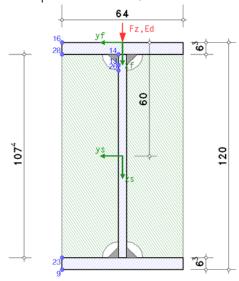
Querschnittswerte: $A = 15.19 \text{ cm}^2$, $z_s = 86.0 \text{ mm}$, $l_y = 695.85 \text{ cm}^4$, $y_s = 0.0 \text{ mm}$, $l_z = 28.38 \text{ cm}^4$

Spannungsschwingbreiten:

Pkt. 21: $y_f = 0.0 \text{ mm}, z_f = 170.0 \text{ mm}$ $\Delta \sigma_{x,Ed} = 13.2 \text{ N/mm}^2$

Spannungsschwingbreiten infolge Ermüdung:

Pkt. 21: $y_f = 0.0 \text{ mm}, z_f = 170.0 \text{ mm}$ $\Delta \sigma_{x,f} = 13.2 \text{ N/mm}^2$


Nachweis der Kerbspannungen:

Pkt. 21: y = 0.0 mm, z = 170.0 mm $\Delta \sigma_{x,f} = 13.2 \text{ N/mm}^2 < \Delta \sigma_{x,Rd,f} = 31.3 \text{ N/mm}^2 \implies U_{\Delta \sigma x} = 0.421 \text{ ok}$

3.5. Ermüdung des Konsolprofils (GZE)

Sonderprobleme nach Eurocode 3 EC 3-1-9 (12.10), NA: Deutschland

Kerbfälle / zul. Kerbspannungen bei N = 2·106 Schwingspielen:

Pkt	y f	Zf	∆o _x ,Rd	Δτ Rd	Δσz,Rd	Kerbpunkt	EC 3-1-9, Tab.
	mm	mm	N/mm²	N/mm²	N/mm²		
9	32.0	120.0	160.0	0.0	0.0	am Untergurt	8.1(1)
13	2.2	12.0	100.0	100.0	40.0	am Trägersteg	8.2(7) 8.1(6) 8.10(4)*
° 14	2.2	6.3	0.0	80.0	0.0	am Trägersteg	8.5(8)
16	32.0	0.0	160.0	0.0	0.0	am Obergurt	8.1(1)
23	32.0	113.7	80.0	0.0	0.0	infolge Quersteife	8.4(7)
26	2.2	14.8	0.0	100.0	0.0	infolge Quersteife	8.1(6)
28	32.0	6.3	80.0	0.0	0.0	infolge Quersteife	8.4(7)

 $^{^{\}circ}$: Nachweis der Schweißnaht, * : Kerbspannung $\Delta\sigma_{Z,Rd}$ um eine Kategorie erhöht

Belastung

 $Lk \ 1: \quad M_{y,Ed} = 0.01 \ kNm, \ V_{z,Ed} = 5.00 \ kN$ Lk 2: $M_{y,Ed} = 0.03 \text{ kNm}, V_{z,Ed} = 15.00 \text{ kN}$

Querbelastung auf dem Obergurt: vertikale Einzellast Fz,Ed = 15.0 kN

3.5.1. Ermüdungsnachweis

Querschnittswerte: $A = 12.79 \text{ cm}^2$, $z_s = 60.0 \text{ mm}$, $l_y = 306.31 \text{ cm}^4$, $y_s = 0.0 \text{ mm}$, $l_z = 27.60 \text{ cm}^4$

wirksame Lasteinleitungslänge leff = ss + 2·tf = 39.3 mm

... am Trägersteg σ_{oz} = -86.7 N/mm², τ_{o} = 17.3 N/mm² / ... an der Schweißnaht σ_{oz} = -47.7 N/mm², τ_{o} = 9.5 N/mm²

Spannungsschwingbreiten:

Pkt. 13: $y_f = 2.2 \text{ mm}, z_f = 12.0 \text{ mm}$ $\Delta \sigma_{x,Ed} = 0.3 \text{ N/mm}^2$ $\Delta \tau Ed = 52.7 \text{ N/mm}^2$ $\Delta \sigma_{z,Ed} = 86.7 \text{ N/mm}^2$

Spannungsschwingbreiten infolge Ermüdung:

Pkt. 13: $y_f = 2.2 \text{ mm}, z_f = 12.0 \text{ mm}$ $\Delta \sigma_{x,f} = 0.3 \text{ N/mm}^2$ $\Delta \tau f = 52.7 \text{ N/mm}^2$ $\Delta \sigma_{z,f} = 86.7 \text{ N/mm}^2$

Nachweis der Kerbspannungen:

Pkt. 13: y = 2.2 mm, z = 12.0 mm $\Delta \sigma_{x,f} = 0.3 \text{ N/mm}^2 < \Delta \sigma_{x,Rd,f} = 87.0 \text{ N/mm}^2$ \Rightarrow $U_{\Delta\sigma x} = 0.004$ ok

 $\Delta \tau_f = 52.7 \text{ N/mm}^2 < \Delta \tau_{Rd,f} = 87.0 \text{ N/mm}^2$ \Rightarrow $U_{\Delta\tau} = 0.606$ ok $\Delta \sigma_{z,f} = 86.7 \text{ N/mm}^2 > \Delta \sigma_{z,Rd,f} = 34.8 \text{ N/mm}^2 \Rightarrow U_{\Delta \sigma z} = 2.494 \text{ nicht ok !!}$

Interaction $U_i = U_{\Delta\sigma x}^3 + U_{\Delta\sigma z}^3 + U_{\Delta\tau}^5 = 15.592 > 1$ nicht ok!!

max U = 2.494 > 1 nicht ok !! Ermüdungsnachweis [Pkt. 13]:

Endergebnis

max U = 2.494 > 1 nicht ok!! Maximale Ausnutzung: Ermüdung der Verbindung / des Profils

Tragfähigkeit nicht gewährleistet !!

5. Vorschriften

EN 1990, Eurocode 0: Grundlagen der Tragwerksplanung; Deutsche Fassung EN 1990:2002 + A1:2005 + A1:2005/AC:2010, Ausgabe Dezember 2010 EN 1990/NA, Nationaler Anhang zur EN 1990, Ausgabe Dezember 2010

EN 1993-1-1, Eurocode 3: Bemessung und Konstruktion von Stahlbauten -Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau; Deutsche Fassung EN 1993-1-1:2005 + AC:2009, Ausgabe Dezember 2010 EN 1993-1-1/A1, Ergänzungen zur EN 1993-1-1, Ausgabe Juli 2014 EN 1993-1-1/NA, Nationaler Anhang zur EN 1993-1-1, Ausgabe Dezember 2018

EN 1993-1-8, Eurocode 3: Bemessung und Konstruktion von Stahlbauten -Teil 1-8: Bemessung von Anschlüssen; Deutsche Fassung EN 1993-1-8:2005 + AC:2009, Ausgabe Dezember 2010 EN 1993-1-8/NA, Nationaler Anhang zur EN 1993-1-8, Ausgabe Dezember 2010

EN 1993-1-5, Eurocode 3: Bemessung und Konstruktion von Stahlbauten - Teil 1-5: Plattenförmige Bauteile; Deutsche Fassung EN 1993-1-5:2006 + AC:2009 + A1:2017 + A2:2019, Ausgabe Oktober 2019 EN 1993-1-5/NA, Nationaler Anhang zur EN 1993-1-5, Ausgabe Dezember 2010

EN 1993-1-9, Eurocode 3: Bemessung und Konstruktion von Stahlbauten - Teil 1-9: Ermüdung; Deutsche Fassung EN 1993-1-9:2006 + AC:2009, Ausgabe Dezember 2010 EN 1993-1-9/NA, Nationaler Anhang zur EN 1993-1-9, Ausgabe Dezember 2010