1. input data

1.1. general settings

vibration analysis in accordance with the design and dimensioning rules from the research project Winter/Hamm/Richter: "Schwingungs- und Dämpfungsverhalten von Holz- und Holz-Beton-Verbunddecken" TU München 2010

ceiling between different utilisation units \Rightarrow fgrenz = 8 Hz, Wgrenz = 0.5 mm, agrenz = 0.70 m/s² modal damping ratio $\xi = 0.01$

continuous effect is not taken into account in the stiffness criterion calculation using approximation formulas acc. to DIN EN 1995-1-1, 7.3.3

1.2. dimensions

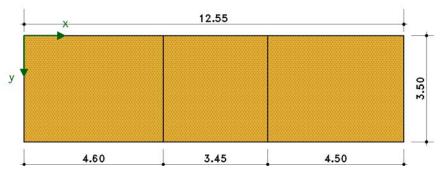
ceiling width b = 3.500 m, 3 span(s), all outer edges are hinged

span	1
	m
1	4.600
2	3.450
3	4.500

continuous effect is not taken into account in the stiffness criterion all intermediate support axles are rigidly mounted

1.3. permanent action effects

Nr.	action eff	g kN/m ²
1	permanent loads	0.838
Σ		0.838


1.4. screed

60 mm cement screed, E = 25000 N/mm², g = 1.320 kN/m², $I_{\text{screed}} = 18000000 \text{ mm⁴/m}$ \Rightarrow EI_{screed} = 450.000000 Mm²/m with consideration of rigidity in the transverse direction as well

1.5. cross laminated timber ceiling panel

Merkle X-Lam 180/5s, structure 40.0-30.0-40.0-30.0-40.0 solid coniferous timber C24 top layers in x-direction, d = 180.0 mmwithout consideration of shear deformations in x-direction without consideration of shear deformations in y-direction lateral contraction number v = 0.00, drill stiffness = 50.0 plate is clamped with 2- axis

1.6. plan view scale 1:125

2. results

2.1. natural frequency

Attention! All stiffnesses are user-defined!

 $EIlengthwise = 3.038000 \text{ MNm}^2/\text{m}, EIcross = 0.871000 \text{ MNm}^2/\text{m}$ $k_f = 1.175$, $b_{ef} = 3.060$, $\alpha = 1.040 \Rightarrow f(\alpha) = 1.362$, $m = 220.0 \text{ kG/m}^2$ $f_e = 13.966 \text{ Hz} \ge f_e = 8 \text{ Hz} \Rightarrow \text{criterion fulfilled!}$

2.2. stiffness criterion

bef = 3.060 m $w(2kN) = 0.23 \text{ mm} \le w_{qrenz} = 0.5 \text{ mm} \Rightarrow \text{criterion fulfilled!}$

2.3. constructive requirements

floating storage of the screed is absolutely necessary! acc. to [Winter/Hamm/Richter], TU München 2010 gilt: Due to their higher mass and greater rigidity, wet screeds are better $% \left(1\right) =\left(1\right) \left(1$ than dry screeds in terms of the vibration behaviour of the ceilings. A (preferably heavy) fill improves the vibration behaviour. The heavier the fill, the greater the improvement in the subjective assessment. Heavy fills are fills with a surface weight of at least 60 $\mbox{kg/m}^2.$

verification fulfilled!