pcae - Stahlbetontheorie

Copyright 2010-2015
3. überarbeitete Auflage, Februar 2015
pcae GmbH, Kopernikusstr. 4 A, 30167 Hannover

pcae versichert, dass Handbuch und Programm nach bestem Wissen und Gewissen erstellt wurden. Für absolute Fehlerfreiheit kann jedoch infolge der komplexen Materie keine Gewähr übernommen werden.

Änderungen an Programm und Beschreibung vorbehalten.

Korrekturen und Ergänzungen zum vorliegenden Handbuch sind ggf. auf der aktuellen Installations-CD enthalten. Ergeben sich Abweichungen zur Online-Hilfe, ist diese aktualisiert.
Ferner finden Sie Verbesserungen und Tipps im Internet unter www.pcae.de.
Von dort können zudem aktualisierte Programmversionen herunter geladen werden. S. hierzu auch automatische Patch-Kontrolle im DTE®-System.
Inhaltsverzeichnis

1 Materialparameter für die Stahlbetonbemessung ... 9
 1.1 Beton .. 9
 1.2 Betonstahl .. 10
 1.3 Benutzerdefinierte Materialien .. 11
 1.4 Spezielle Materialien .. 12
 1.4.1 ComBAR GFK .. 12
 1.4.2 Gitterträger ... 12
 1.5 Spannungsdehnungslinien und Sicherheitskonzept ... 12
 1.5.1 DIN 1045 (7.88) ... 12
 1.5.2 DIN 1045-1, DIN-Fb 102, EC 2 .. 13
 1.5.3 ÖN B 4700 ... 14
 1.6 Vereinfachter Nachweis der plastischen Rotation ... 15
 1.7 Kriechen und Schwinden ... 15

2 Biege- und Normalkraftbemessung .. 16
 2.1 Anforderungen an die Bewehrungsanordnung ... 16
 2.1.1 DIN 1045, 17.2 ... 16
 2.1.2 DIN 1045-1, 10.2 / DIN-Fb 102, 4.3.1 .. 16
 2.1.3 EC 2, 6.1 ... 16
 2.1.4 ÖN B 4700, 3.4.2 .. 17
 2.2 Bemessung .. 17

3 Querschnittsausnutzung / Brandschutz von Druckgliedern .. 18

4 Brandbem. n. DIN EN 1992-1-2 (EC 2 für Brandbeanspruchung) .. 19
 4.1 Thermische Analyse .. 19
 4.2 Mechanische Analyse - Bemessungsverfahren ... 21
 4.2.1 Zonenmethode ... 21
 4.2.2 Vereinfachtes allgemeines Rechenverfahren .. 22
 4.3 Spannungsdehnungsbeziehungen unter Hohtemperaturbelastung ... 22

5 Druckzonendicke / Nachweis der Dichtigkeit .. 24
 5.1 DAFStb-Richtlinien "Wasserundurchlässige Bauwerke" ... 24
 5.1.1 Nachweis der Mindestdruckzonendicke .. 24
 5.1.2 Rissbreitenannahweis als Dichtigkeitsnachweis ... 24
 5.2 DAFStb-Richtlinien "Betonbau beim Umgang mit wassergefährdenden Stoffen" ... 24
 5.2.1 Nachweis der Dichtigkeit in ungerissenen Bereichen ... 24
 5.2.2 Nachweis der Mindestdruckzonendicke ... 25
 5.2.3 Rissbreitenannahweis als Dichtigkeitsnachweis ... 25

6 Schubbemessung ... 26
 6.1 Schubbemessung DIN 1045 (7.88), 17.5 ... 26
 6.1.1 Querkraftbemessung ... 26
 6.1.1.1 Verfahren nach Heft 400, DAFStb .. 27
 6.1.1.2 Verfahren nach Grasser und Heft 320, DAFStb ... 28
 6.1.2 Torsionsbemessung ... 28
 6.1.3 Bemessung für Querkraft und Torsion ... 28
 6.2 Schubbemessung DIN 1045-1, 10.3 u. 10.4 / DIN-Fb 102, 4.3.2 u. 4.3.3 / EC 2, 6.2 u. 6.3 / ÖN B 4700, 3.4.4 u. 3.4.6 ... 28
 6.2.1 Querkraftbemessung ... 29
 6.2.1.1 Bemessungswert der ohne Querkraftbewehrung aufnehmbaren Querkraft ... 29
 6.2.1.2 Besonderheiten bei einer "Platten"-Bemessung .. 30
 6.2.1.3 Bemessungswert der durch die Tragfähigkeit der Querkraftbewehrung begrenzten aufnehmbaren Querkraft ... 30

Inhaltsverzeichnis

5
6.2.1.4 Berechnung des Druckstrebenwinkels ... 31
6.2.1.5 Bemessungswert der durch die Druckstrebenfestigkeit begrenzten aufnehmbaren Querkraft ... 31
6.2.1.6 Querkraftausnutzung .. 32
6.2.1.7 Besonderheiten bei der Ausnutzung von Gitterträgern ... 32
6.2.2 Zweiaxige Querkraftbeanspruchung (geneigte Querkraft) 32
6.2.2.1 Bemessung der Querkraftkomponenten ... 32
6.2.2.2 Bemessungsansatz von Peter Mark .. 33
6.2.3 Mindestquerkraftbewehrung .. 33
6.2.4 Anschluss der Gurte an den Balkensteg .. 33
6.2.5 Schubkraftübertragung in Fugen .. 34
6.2.6 Torsionsbemessung .. 37
6.2.6.1 Prüfung auf erforderlichen Nachweis ... 37
6.2.6.2 Berechnung des Bemessungswertes des aufnehmbaren Torsionsmomentes 37
6.2.6.3 Berechnung des maximal aufnehmbaren Torsionsmomentes 38
6.2.7 Bemessung für Querkraft und Torsion .. 38
6.2.8 Hauptdruckspannungsnachweis .. 38
7 Rissnachweis .. 39
7.1 Rissnachweis DIN 1045,17.6 ... 40
7.1.1 Mindestbewehrung (17.6.2) .. 40
7.1.2 Regeln für die statisch erforderliche Bewehrung (17.6.3) 41
7.2 Rissnachweis DIN 1045-1, 11.2 / DIN-Fb 102, 4.4.2 / EC 2, 7.3 41
7.2.1 Mindestbewehrung ohne direkte Berechnung (DIN 1045-1, 11.2.2) 42
7.2.2 Mindestbewehrung bei dickeren Bauteilen (nur DIN 1045-1 (8.08), 11.2.2(8)) 43
7.2.3 Berechnung des Grenzdurchmessers der Bewehrung ohne direkte Berechnung (DIN 1045-1, 11.2.3) .. 43
7.2.4 Begrenzung der Rissbreite durch direkte Berechnung (DIN 1045-1, 11.2.4) 43
7.3 Rissnachweis ÖN B 4700, 4.2 ... 46
7.3.1 überwiegende Zwangsbeanspruchung (4.2.2) .. 46
7.3.2 überwiegende Lastbeanspruchung (4.2.3) ... 46
7.4 Rissnachweis nach P. Schießl .. 47
7.5 Rissnachweis nach P. Noakowski ... 47
7.6 besondere Hinweise bei Kreisquerschnitten ... 48
7.6.1 DIN 1045-1, DIN-Fb 102, EC 2, Schießl .. 48
7.6.2 Schießl, Noakowski ... 48
7.7 besondere Hinweise bei Wänden .. 48
8 Spannungsnachweis ... 49
9 Ermüdungs- (Schwing-)nachweis .. 50
9.1 Schwingschwingnachweis DIN 1045, 17.8 ... 50
9.2 Ermüdungsnachweis DIN 1045-1, 10.8 ... 50
9.2.1 Nachweis n. Abschn. 10.8.4 (Stufe 1, GZG) ... 51
9.2.1.1 Bewehrung ... 51
9.2.1.2 Beton .. 51
9.2.2 Nachweis n. Abschn. 10.8.3 (Stufe 2, GZT) ... 51
9.2.2.1 Bewehrung ... 52
9.2.2.2 Beton .. 52
10 Verformungsnachweis ... 53
10.1 Verformungsnachweis n. DIN 1045, 17.7.2 .. 53
10.2 Verformungsnachweis n. DIN 1045-1, 11.3.2 / ÖN B 4700, 4.3.2 53
10.3 Verformungsnachweis n. EC 2, 7.4.2 .. 53
10.4 Verformungsnachweis n. Heft 240, DAfStb .. 54
11 mitwirkende Plattenbreite .. 56
11.1 DIN 1045, 15.3 / DIN 1045-1, 7.3.1 / DIN-Fb 102, 2.5.2.2.1 / EC 2, 5.3.2.1 56
12 Bemessung von unbewehrtem Beton .. 57
12.1 DIN 1045, 17.9 ... 57
12.2 DIN 1045-1 ...57
 12.2.1 Biegemessung ...57
 12.2.2 Druckglieder aus unbewehrtem Beton (Theorie II. Ord.) ..57
 12.2.3 Schubbemessung ...58
12.3 EC 2 ..58
 12.3.1 Biegemessung ...58
 12.3.2 Auswirkungen von Verformungen (Th. II. Ord.) auf Einzelfeldglieder und Wände58
 12.3.3 Schubbemessung ...59
13 Umschnürte Druckglieder ...59
 13.1 DIN 1045, 17.3.2 ...59
14 Vereinfachter Knicknachweis für Einzelfeldglieder ...60
 14.1 DIN 1045-1, 8.6 / EC 2, 5.8.3 ..60
 14.2 DIN 1045-1, 8.6.5 / EC 2, 5.8.8 ...60
15 Korrespondierende Kapitelnormen DIN 1045-1 / DIN-Fb 102 / EC 2 / ÖN B 470062
17 Literaturverzeichnis ..67
18 Index ..70
1 Materialparameter für die Stahlbetonbemessung

Je nach Ausbaustufe unterstützen pcae-Programme derzeit folgende Bemessungsregeln (Normen):
- DIN 1045 (7.88) - Stahlbetonbemessung
- DIN 1045-1 (7.01) - Stahlbetonbemessung im Hochbau
- DIN-Fachbericht 102 (3.09) - Bemessung von Betonbrücken
- ÖNORM B 4700 (6.01) - Österreich: Stahlbetonbemessung im Hochbau
- DIN EN 1992-1-1 (10.05) - Eurocode 2: Stahlbetonbemessung im Hochbau
- DIN 1045-1 (8.08) - Stahlbetonbemessung im Hochbau

Anmerkungen zum EC 2: Der deutsche Nationale Anhang des Eurocodes wird in den pcae-Programmen derzeit nicht unterstützt. Sämtliche Parameter, die nicht frei eingebbar sind, folgen somit der Empfehlung des Eurocodes.

1.1 Beton

Nach DIN 1045 dürfen nur Betone der Festigkeitsklassen B 15, B 25, B 35, B 45, B 55 sowie die Betonstahlsorten (nur Stabstahl) BSt 220/340, BSt 420, BSt 500 ausgewählt werden.

Nach DIN 1045-1, DIN Fb 102 und EC 2 können zusätzlich Betone der Festigkeitsklassen C 12/15, C 16/20, C 20/25, C 25/30, C 30/37, C 35/45, C 40/50, C 50/60, C 55/67, C 60/75, C 70/85, C 80/95, C 90/105, C 100/115 bzw. die zugehörigen Leichtbetone (ausführbar bei erlaubten (blau gekennzeichneten) Betongüten) LC 12/13, LC 16/18, LC 20/22, LC 25/28, LC 30/33, LC 35/38, LC 40/44, LC 50/55, LC 55/60, LC 60/66 sowie die Betonstahlsorten BSt 500 A (normal duktil), BSt 500 B (hoch duktil) ausgewählt werden.

Da Unterschiede in den Kennwerten bestehen, werden die österreichischen Beton- und Stahlgüten durch ein vorangestelltes "Ö" gekennzeichnet.
Es werden sämtliche Beton- und Stahlsorten mit Ausnahme der Ö-Betone und -stähle unterstützt.

In 3.4.1.1 (3) sind die in dieser Norm geregelten Betonfestigkeitsklassen aufgelistet. Es sind nur Betone bis zu einer Würfeldruckfestigkeit von 60 N/mm² (Normalbeton) zugelassen. Leichtbeton ist in dieser Norm nicht geregelt.

Tab. 3.1 berücksichtigt Betonfestigkeitsklassen bis C 90/105.

Die Bemessung von Bauteilen mit Eurocode-nahen Normen ist auch mit Betonsorten der DIN 1045 möglich. Dazu wird die Würfeldruckfestigkeit β_{WN} umgerechnet in die Zylinderdruckfestigkeit $f_{\text{ck}} = \beta_{\text{WN}} / 1.28$ (nach T. Ruge).

Die Dichte des Leichtbetons ist bei Bedarf mit $2000 \text{ kg/m}^3 > \rho > 800 \text{ kg/m}^3$ anzugeben.

Der Abminderungsbeiwert α_c zur Berücksichtigung von Langzeitauswirkungen auf die Druckfestigkeit sowie zur Umrechnung zwischen Zylinderdruckfestigkeit und einaxialer Druckfestigkeit des Betons ist hier zu belegen (i. A. DIN 1045-1 und DIN-Fb 102: Normalbeton: $\alpha_c = 0.85$, Leichtbeton: $\alpha_c = 0.75$, EC 2: $\alpha_c = 1.0$).

DIN 1045, ÖN B 4700: α_c ist bereits in die Betondruckfestigkeit β_R bzw. f_{ck} eingerechnet.

1.2 Betonstahl

Die Duktilitätsklassen der Stahlsorten sind folgendermaßen definiert:

- hochduktile: $f_{\text{yk}} / f_{\text{yk}} \geq 1.08$ und $\varepsilon_{\text{su,k}} = 50 \%$
- normalduktile: $f_{\text{yk}} / f_{\text{yk}} \geq 1.05$ und $\varepsilon_{\text{su,k}} = 25 \%$

Bei der Bemessung im Grenzzustand der Tragfähigkeit wird stets ein normalduktiler Betonstahl vorausgesetzt (d.h. $f_{\text{yk}} / f_{\text{yk}} \geq 1.05$ und $\varepsilon_{\text{su,k}} = 25 \%$).

Der Verlauf der Spannungsdehnungslinie von Betonstählen n. Bild 12 ist linear-constant. Die Bruchdehnung beträgt $\varepsilon_{\text{su,k}} = 50 \%$.

Der Verlauf der Spannungsdehnungslinie von Betonstählen nach 3.2 ist linear-constant ($f_{\text{yk}} = f_{\text{yk}}$). Die Bruchdehnung wird näherungsweise zu $\varepsilon_{\text{su,k}} = 20 \%$ angenommen.
1.3 Benutzerdefinierte Materialien

Außerdem kann eine Bemessung für benutzerdefinierte Materialien erfolgen (nicht DIN 1045 und ÖN B 4700). Dazu sind in einem gesonderten Eigenschaftsblatt die benötigten Grenzwerte zur Beschreibung der Spannungsdehnungslinien anzugeben.

Beton

- f_{ck} charakteristische Zylinderdruckfestigkeit nach 28 Tagen in MN/m²
- ε_{c2} Dehnung beim Erreichen der Festigkeitsgrenze in %
- ε_{c2u} Bruchdehnung in %
- n_c Exponent der Parabel $\sigma_c = f_{ck} \left[1 - (\varepsilon_c / \varepsilon_{c2})^{n_c} \right]$, für normalfesten Beton 2.0, für hochfesten Beton und Leichtbeton ab einer Güte von C60/75 in Tab. 9 und 10 der DIN 1045-1 geregelt
- f_{cmt} Mittelwert der zentrischen Zugfestigkeit in MN/m²
- E_{cm} Elastizitätsmodul (Sekantenmodul) in MN/m²

Bewehrung

- f_{yk} Streckgrenze, $f_{yk} = f_{yk} / \gamma_s$ in MN/m²
- f_{uk} Dehngrenze, $f_{uk} = f_{u} / \gamma_s$ in MN/m²
- ε_{su} Bruchdehnung in %
- E_s Elastizitätsmodul in MN/m²
1.4 Spezielle Materialien

Neuerdings sind in einigen Stahlbeton-Bemessungsmodulen auch spezielle Materialien integriert, die in die Eurocode-nahen Bemessungsverfahren integriert werden können. Derzeit gibt es als neue 'Stahlsorten'.

1.4.1 ComBAR GFK

Bewehrung aus glasfaserverstärktem Kunststoff von Schöck Bauteile GmbH (s. www.schoeck.de). Diese Bewehrung ist für besondere Anforderungen an Korrosionsbeständigkeit, elektrischer Isolation oder besonderer Resistenz gegen chemischen Angriff entwickelt worden. Folgende Parameter gehen in die Bemessung ein:

\[f_{yk} = f_{ik} = 870 \text{ N/mm}^2 \]
\[\gamma_s = 2.0 \text{ (abweichend von der Norm)} \]
\[\varepsilon_{sw} = 0.725 \% \]
\[E_s = 60.000 \text{ N/mm}^2 \]

1.4.2 Gitterträger

(nicht ÖN B 4700): Die bei der Herstellung von Elementdecken häufig verwendeten Gitterträger können neben der Querkraftbemessung auch bei der Biegebemessung berücksichtigt werden. Die von den genormten Stahlsorten abweichenden Materialdaten sind wie folgt definiert:

\[f_{yk} = f_{ik} = 420 \text{ N/mm}^2 \]
\[\varepsilon_{su} = 2.5 \% \]
\[E_s = 200.000 \text{ N/mm}^2 \]

1.5 Spannungsdehnungslinien und Sicherheitskonzept

In den nachfolgenden Bildern sind die in den unterschiedlichen DIN-Normen angenommenen Spannungsdehnungslinien und die verschiedenen Sicherheitskonzepte für Nachweise im Grenzzustand der Tragfähigkeit in der Übersicht dargestellt.

1.5.1 DIN 1045 (7.88)

Die Spannungsdehnungsbeziehung für den Beton (grau unterlegt) wird als Parabel-Rechteck idealisiert, für den Betonstahl (blau) wird eine bilineare Spannungsdehnungsbeziehung angenommen, deren Verlauf nach Erreichen der Streckgrenze konstant ist. Der Sicherheitsbeiwert (gelb) variiert in Abhängigkeit der Stahldehnung zwischen 1.75 und 2.1.
Die Stahlbruchdehnung wird mit $\varepsilon_{s1u} = 5\%$ und die Betonbruchdehnung mit $\varepsilon_{c2u} = -3.5\%$ (voll überdrückt $\varepsilon_{c2} = -2\%$) angenommen. Aus Gründen der Wirtschaftlichkeit (variabler Sicherheitsbeiwert) sollte bei höherer Belastung die Stahlbruchdehnung nur zu $\varepsilon_{s1} = 3\%$ ausgenutzt werden. Bei Bedarf wird programmintern umgeschaltet.

Diese Spannungsdehnungslinien werden nach DIN 1045 (7.88) grundsätzlich auch für die Nachweise im Gebrauchslastzustand mit $\gamma = 1$ angesetzt.

1.5.2 DIN 1045-1, DIN-Fb 102, EC 2

Die Spannungsdehnungsbeziehung für Nachweise im Grenzzustand der Tragfähigkeit wird für den Beton (grau unterlegt) nach 9.1.6 als Parabel-Rechteck idealisiert, für den Betonstahl (blau) wird nach 9.2.4 eine bilineare Spannungsdehnungsbeziehung angenommen, deren Verlauf nach Erreichen der Streckgrenze linear veränderlich bis zur Bruchdehnung ist. Die Sicherheitsbeiwerte für Beton γ_c und Stahl γ_S (gelb) sind - in Abhängigkeit von der Bemessungssituation - konstant. Sie werden entweder für die Bemessungssituationen Grundkombination bzw. außergewöhnliche Kombination berechnet oder können vom Benutzer benutzerdefiniert vorgegeben werden.

Die Stahlbruchdehnung beträgt $\varepsilon_{s1u} = 25\%$; die Betonbruchdehnung ε_{c2u} (voll überdrückt ε_{c2}) ist für DIN 1045-1-Betongüten abhängig von der Betongüte in Tab. 9 (Leichtbeton Tab. 10) angegeben. Aus Gründen der Wirtschaftlichkeit sollte bei höherer Belastung die Druckzonenhöhe begrenzt werden (s. Abs. 1.6, Vereinfachter Nachweis der plastischen Rotation, S. 15). Bei Bedarf wird programmintern umgeschaltet.

Für Nachweise im Grenzzustand der Gebrauchstauglichkeit kann das Materialverhalten des Betons mit $\gamma_c = 1$ wahlweise über das Parabel-Rechteck-Diagramm nach 9.1.6, über die wirklichkeitsnähere Spannungsdehnungsbeziehung nach 9.1.5 (empfehlenswert) oder linear mit $\varepsilon_c = \frac{E_s}{E_{cm}} \cdot \varepsilon_{c2u}$, bzw. $\alpha_E = \text{benutzerdefiniert}$, angenommen werden. Unterschiede zeichnen sich insbesondere bei den Betondruckspannungen, wohingegen die Stahlzugspannungen nur wenig auf eine Veränderung des Betonverhaltens reagieren.

Beim hoher Belastung ($\sigma > 0.4 \cdot f_{cm}$) erweist sich das Parabel-Rechteck-Diagramm nach 9.1.6 als 'weich', während der lineare Ansatz zu hohe Werte liefert. Die realitätsnahe Abbildung der Spannungsdehnungsbeziehung des Betons nach 9.1.5 berücksichtigt in den geringen Dehnungsbereichen das lineare Materialverhalten und bei hoher Belastung den sanften Übergang zur Bruchspannung.
Als Spannungsdehnungslinie des Betonstahls wird nach 9.2.3 ein bilinerer Verlauf mit $\gamma_s = 1$ angenommen, dessen Dehngrenze mit der Duktilitätsklasse variiert.

1.5.3 ÖN B 4700

Die Spannungsdehnungsbeziehung für Nachweise im Grenzzustand der Tragfähigkeit wird für den Beton (grau unterlegt) nach 3.4.1.1(4) als Parabel-Rechteck idealisiert, für den Betonstahl (blau) wird nach 3.4.1.2 eine bilineare Spannungsdehnungsbeziehung angenommen, deren Verlauf nach Erreichen der Streckgrenze konstant verläuft. Die Sicherheitsbeiwerte für Beton γ_c und Stahl γ_s (gelb) sind - in Abhängigkeit von der Bemessungssituation - konstant. Sie werden entweder für die Bemessungssituationen Grundkombination bzw. außergewöhnliche Kombination berechnet oder können vom Benutzer benutzerdefiniert vorgegeben werden.

Die Stahlbruchdehnung beträgt $\varepsilon_{su} = 20 \, \%$ (Annahme); die Betonbruchdehnung beträgt für ÖNORM-Betongüten $\varepsilon_{bu} = -3.5 \, \%$ ($\varepsilon_{bu} = -2 \, \%$, s. Bild 7). Aus Gründen der Wirtschaftlichkeit sollte bei höherer Belastung die Druckzonenhöhe begrenzt werden (s. Abs. 1.6, Vereinfachter Nachweis der plastischen Rotation, S. 15). Bei Bedarf wird programmintern umgeschaltet.

Für Nachweise im Grenzzustand der Gebrauchstauglichkeit kann das Materialverhalten des Betons mit $\gamma_c = 1$ wahlweise über das Parabel-Rechteck-Diagramm nach 3.4.1.1(4) oder linear mit $\alpha_E = E_s / E_{om}$, bzw. $\alpha_E = $ benutzerdefiniert, angenommen werden. Unterschiede zeigen sich insbesondere bei den Betondruckspannungen, wohingegen die Stahlzugspannungen nur wenig auf eine Veränderung des Materialverhaltens reagieren.
1.6 Vereinfachter Nachweis der plastischen Rotation

Nach DIN 1045-1, 8.2(3), wird programmintern berücksichtigt für Flächentragwerke:

\[k_x = \frac{x}{d} \leq 0.45 \]
für Beton bis zur Festigkeitsklasse C50/60
\[k_x = \frac{x}{d} \leq 0.35 \]
für Beton ab der Festigkeitsklasse C55/67 und Leichtbeton

für Balken (wirtschaftlich):

\[k_x = \frac{x}{d} \leq \frac{\varepsilon_{yd}}{\varepsilon_{c2u}} \]
mit \(\varepsilon_{yd} = \frac{f_{yd}}{E_{s}} \)

Bei Bedarf kann für Balken der Grenzwert \(\lim k_x \) variiert werden.

Die Einhaltung der Druckzonenhöhe erfolgt jedoch nur, wenn

\[d_2 \leq \left(1-\frac{\varepsilon_{yd}}{\varepsilon_{c2u}}\right) \cdot \lim k_x \cdot h_{stat} \]

d.h. wenn in Stahlfaser 2 wenigstens \(\varepsilon_{yd} \) ausgenutzt wird. Falls sich kein Gleichgewichtszustand findet, wird programmintern auf 'einlagige' Bewehrungsanordnung umgeschaltet.

1.7 Kriechen und Schwinden

Nachweise, die im Grenzzustand der Gebrauchstauglichkeit geführt werden oder bei denen die Spannungsermittlung entscheidend ist, beziehen sich häufig auf einen Zeitpunkt (Endzeitpunkt der Nutzbarkeit), an dem das Betonkriechen und -schwinden nicht vernachlässigbar ist. Diese Einflüsse können über einen einfachen Ansatz (Modifikation der Spannungsdehnungslinie des Betons, nur DIN 1045-1) berücksichtigt werden:

- Kriechen: Vergrößerung der Dehnungen \(\varepsilon_{c2}, \varepsilon_{c2u} \) (Verringerung des E-Moduls) um den Faktor \((1+\varphi_0)\)
- Schwinden: Verringerung der Dehnungen um das Maß \(\varepsilon_{cs} \).

Die effektive Endkriechzahl \(\varphi_{eff} = f_{eff} \cdot \varphi_{c} \) und Endschwindmaß \(\varepsilon_{es} \) können entweder vom Anwender vorgegeben oder vom Programm n. DIN 1045-1, Kap. 9.1.4 bzw. Heft 525, DAfStb umgesetzt werden.

Der Dauerlastfaktor kann abgeschätzt werden zu \(f_{eff} = \frac{M_{1perm}}{M_{1Ed}} \).

- \(M_{1perm} \): Biegemoment nach Theorie I. Ordnung unter der quasiständigen Einwirkungskombination,
- \(M_{1Ed} \): das entsprechende Biegemoment unter der Bemessungseinwirkungskomb.)
Biege- und Normalkraftbemessung

Anmerkungen zum EC 2: Der deutsche Nationale Anhang des Eurocodes wird in den pcae-Programmen derzeit nicht unterstützt. Sämtliche Parameter, die nicht frei eingebbar sind, folgen somit der Empfehlung des Eurocodes.

2.1 Anforderungen an die Bewehrungsanordnung

2.1.1 DIN 1045, 17.2

Nach 25.2.2.1 ist bei Druckgliedern ein minimaler Bewehrungsgrad von 0.8 % des statisch erforderlichen Querschnitts zu berücksichtigen. Im Programm kann dieser Mindestbewehrungsgrad frei eingestellt werden.

Soll bei der Bemessung eine Grundbewehrung berücksichtigt werden, ist der vorhandene Bewehrungsquerschnitt mit As0 bzw. μ0 anzugeben.

2.1.2 DIN 1045-1, 10.2 / DIN-Fb 102, 4.3.1

Die Mindestbewehrung für Stützen (stabförmige Druckglieder) beträgt nach 13.5.2(1)

\[A_{s,\text{min}} = 0.15 \cdot |N_{Ed}| / f_{yd} \]

Abweichend von DIN 1045-1 muss nach DIN-Fb 102, 5.4.1.2.1(1)*P außerdem eingehalten werden

\[A_{s,\text{min}} \geq 0.003 \cdot A_c \]

Für Wände ist Abschnitt 13.7.1(3) zu berücksichtigen, in dem gefordert wird, dass die lotrechte Bewehrung

\[A_{s,\text{min}} = 0.0015 \cdot A_c \quad \text{für} \quad |N_{Ed}| < 0.3 \cdot f_{cd} \cdot A_c \]

\[A_{s,\text{min}} = 0.0030 \cdot A_c \quad \text{für} \quad |N_{Ed}| \geq 0.3 \cdot f_{cd} \cdot A_c \]

nicht unterschreitet. Allerdings darf nach DIN 1045-1 (8.08) die Mindestbewehrung auch belastungsabhängig wie für Stützen ermittelt werden:

\[A_{s,\text{min}} = 0.15 \cdot |N_{Ed}| / f_{yd} \geq 0.0015 \cdot A_c \]

2.1.3 EC 2, 6.1

Zur Vermeidung schlagartigen Versagens ist bei überwiegend biegebeanspruchten Bauteilen nach 9.2.1.1(1) eine Mindestbewehrung vorzusehen.

\[A_{s,\text{min}} \geq 0.26 \cdot f_{ctm} / f_{yk} \geq 0.0013 \cdot b_l \cdot d \]

Die Mindestbewehrung für Stützen (stabförmige Druckglieder) beträgt nach 9.5.2(2)

\[A_{s,\text{min}} = 0.10 \cdot |N_{Ed}| / f_{yd} \geq 0.002 \cdot A_c \]
Für Wände ist Abschnitt 9.6.2(1) zu berücksichtigen, in dem gefordert wird, dass die vertikale Bewehrung
\[A_{s,\text{min}} = 0.002 \cdot A_c \] nicht unterschritten.

2.1.4 ÖN B 4700, 3.4.2

Zur Sicherstellung eines duktilen Bauteilverhaltens ist bei überwiegend biegebeanspruchten Bauteilen nach 3.4.9.4(1) eine Mindestbewehrung vorzusehen.
\[A_{s,\text{min}} \geq 1.22 \cdot \left(b_t \cdot h_t \right) / f_{yd} \geq 0.0028 \cdot b_t \cdot h_t \quad \text{bis Ö-B 40} \]

- für Ö-B 50 \[A_{s,\text{min}} = 1.15 \cdot A_{s,\text{min}} \]
- für Ö-B 60 \[A_{s,\text{min}} = 1.30 \cdot A_{s,\text{min}} \]

Zwischenwerte sind zu interpolieren.

Die Mindestbewehrung für Stützen (stabförmige Druckglieder) beträgt nach 3.4.9.2
\[A_{s,\text{min}} = 0.15 \cdot \left(N_{Ed} / f_{yd} \right) \geq 0.0028 \cdot A_c \]

Für Wände ist Abschnitt 3.4.9.3 zu berücksichtigen, in dem gefordert wird, dass die gesamte Bewehrung in Druckrichtung
\[A_{s,\text{min}} = 0.0028 \cdot A_c \] nicht unterschritten.

2.2 Bemessung

In Abhängigkeit der jeweiligen Schnittgrößenkombination werden Zug- und Druckrand bestimmt sowie die vorgegebene Bewehrungsanordnung überprüft. Lässt sich kein eindeutiger Zug-/Druckrand definieren (zentrisch belasteter Querschnitt mit einer bezogenen Ausmitte Druck: \(e/d < 0.35 \), Zug: \(e/d < 0.20 \) mit \(e = |M/N| \)), muss die Bewehrung oben und unten symmetrisch eingelegt werden. Soll ein unbewehrter Querschnitt (s. Abs. 12, S. 57) bemessen werden, kann lediglich die bezogene Tragfähigkeit (Sicherheitsnachweis) des Betonquerschnitts ermittelt werden.

Für jeden Lastfall wird unter Berücksichtigung des minimalen (Mindestbewehrung) und maximalen Bewehrungsgrades die erforderliche Längsbewehrung bestimmt. Werden sämtliche Lastfälle fehlerfrei bemessen, ergeben sich die maximal erforderlichen Bewehrungsquerschnitte oben und unten zu \(A_{s,0 \text{u}} \) und \(A_{s,0 \text{u}} \). Da n. DIN 1045 (7.88) der Sicherheitsbeiwert \(\gamma \) variabel ist, wird dieser stets protokolliert.

Außerdem werden die Bruchdehnungen
DIN 1045 (7.88) \(\varepsilon_{b1u}, \varepsilon_{s2u}, \varepsilon_{b2u} \),
DIN 1045-1 \(\varepsilon_{c2u}, \varepsilon_{s1u}, \varepsilon_{c1u} \)

sowie die Hilfsbeiwerte für die Höhe der Druckzone \(k_x = \varepsilon_{b1} \left(\varepsilon_{b1} - \varepsilon_{s2} \right) = x / h_{\text{stat}} \), der innere Hebelarm \(k_z = z / h_{\text{stat}} \) und die statische Höhe \(h_{\text{stat}} \) (bei Kreisquerschnitten) die effektive Breite \(b_e \) angegeben.

Ergibt die Extremierung der Bewehrungsquerschnitte unter Berücksichtigung einer benutzerdefinierten Grundbewehrung \(A_{s,0\text{u}} \) bzw. \(A_{s,0\text{u}} \) eine Überschreitung des maximal zulässigen Bewehrungsgrades, erfolgt im Ergebnisausdruck ein entsprechender Hinweis.
3 Querschnittsausnutzung / Brandschutz von Druckgliedern

Die Querschnittsausnutzung wird für den schlussendlich erforderlichen Bewehrungsquerschnitt über den Sicherheitsnachweis ermittelt ($U = 1/t$). Die zugrunde liegenden Schnittgrößenkombinationen resultieren aus dem Grenzzustand der Tragfähigkeit (Biegebemessung).

Für vorwiegend auf Druck beanspruchte Querschnitte wird überprüft, ob die Bewehrung für einen Brandschutznachweis (Einteilung in Feuerwiderstandsklassen n. DIN 4102-4) ausreicht. Dazu muss n. **DIN 4102-22** der Ausnutzungsfaktor

$$\alpha_1 = \left(\frac{S_{fi,d,t}}{S_{Rd}} \right) \cdot \alpha^* \leq \alpha_{zul}$$

mit

- $S_{fi,d,t}$: Bemessungswert der vorhandenen Schnittgrößenkombination (N,M) im Brandfall nach DIN 1055-100
- S_{Rd}: Bemessungswert der Tragfähigkeit nach DIN 1045-1
- α^*: Faktor aus Bild 15a, DIN 4102-22, vereinfachend $\alpha^* = 2$
- α_{zul}: maximal möglicher Ausnutzungsfaktor, i.A. $\alpha_{zul} = 1$

als Eingangsvariable in die Tabellen ermittelt werden. Ist $\alpha_1 > \alpha_{zul}$, wird die Bewehrung so lange iterativ erhöht (S_{Rd} vergrößert) bis $\alpha_1 = \alpha_{zul}$ ist. Mit diesem α_1-Wert kann dann für Stützen nach Tab. 31, für Wände nach Tab. 35 (1-seitige Brandbeanspruchung), DIN 4102-4, die Feuerwiderstandsklasse ausgegeben.

Im umgekehrten Fall kann die Einhaltung einer bestimmten Feuerwiderstandsklasse u.A. über α_{zul} gesteuert werden.

Nach neuen Erkenntnissen (s. Technische Regeln zum Brandschutz, BK 2007 T.2 bzw. Fingerloos/Richter) kann bei der Stützenbemessung auf den Faktor α^* verzichtet werden, wenn die geänderte Tab. 31 zur Benennung der Feuerwiderstandsklasse herangezogen wird. Wird der Faktor α^* zu Null gesetzt, muss die Stützenlänge im Brandfall l_{col} vorgegeben werden. Der maximal zulässige Ausnutzungsfaktor darf dann $\alpha_1 = 0.7$ nicht übersteigen.

Kann die Tabelle nicht angewandt werden, wird eine Fehlermeldung ausgegeben.
Brandbem. n. DIN EN 1992-1-2 (EC 2 für Brandbeanspruchung)

Nach EC 2 ist es gegenwärtig möglich, ein Verfahren zur Bestimmung einer adäquaten Leistungsfähigkeit eines Bauteils (Standhalten gegenüber einer Brandeinwirkung) durchzuführen. In den pcae-Programmen sind derzeit zwei Verfahren anwendbar:

- ein 'vereinfachtes Rechenverfahren' n. 4.2 (Zonenmethode nach Anhang B.2)
- ein 'vereinfachtes allgemeines Rechenverfahren' in Anlehnung an 4.3

Beide Verfahren basieren auf einer thermischen Analyse des Bauteils unter Berücksichtigung thermischer Einwirkungen und temperaturabhängiger Materialeigenschaften.

Die Temperaturprofile in einem Stahlbetonbauteil werden ohne Mitwirkung der Bewehrung ermittelt. Die mechanische Analyse baut auf den temperaturabhängigen Veränderungen der mechanischen Materialeigenschaften - auch der thermisch bedingten Dehnungen und Spannungen (Eigenspannungszustände) - auf. Die Einwirkungskombination infolge Brandbeanspruchung ist 'außergewöhnlich' und wird mit charakteristischen Materialkennwerten $\gamma_c = \gamma_s = 1$ bemessen. Kriechen und Schwinden sind unmaßgeblich.

4.1 Thermische Analyse

$$c \cdot \rho \cdot \frac{\partial \vartheta}{\partial t} + \text{div}(-\lambda \cdot \text{grad} \vartheta) = \varphi \quad \text{mit}$$

\begin{align*}
\vartheta(x,t) & \quad \text{Temperatur} \ [^\circ \text{K}] \\
t & \quad \text{Zeit} \ [\text{s}] \\
\text{div}(\ldots), \ \text{grad}(\ldots) & \quad \frac{\partial}{\partial x}(\ldots) \\
x & \quad \text{Ortskoordinaten} \ [\text{m}] \\
\lambda(x,\vartheta) & \quad \text{Wärmeleitfähigkeit} \ [\text{W/(m} \cdot \text{K})] \\
c(x,\vartheta) & \quad \text{spezifische Wärme} \ [\text{kJ/(kg} \cdot \text{K})] \\
\rho(x,\vartheta) & \quad \text{Dichte} \ [\text{kg/m}^3] \\
\varphi(x,t,\vartheta) & \quad \text{Wärmequellenergiebigkeit} \ [\text{kJ/(m}^3 \cdot \text{K})]
\end{align*}

Es handelt sich um ein Anfangs-Randwertproblem:

Anfangsbedingung \quad \vartheta(t=0) = \vartheta_0

Dirichlet'sche Randbedingung \quad \vartheta(x=r_{\alpha}) = \vartheta_{\alpha}

Neumann'sche Randbedingung \quad q(f=x_{\alpha}) = -\lambda \cdot \frac{\partial \vartheta}{\partial n}

Konvektive Randbedingung \quad q(f=x_{\alpha}) = \alpha \cdot (\vartheta - \vartheta_{\alpha})

Strahlungs-Randbedingung \quad \nu(f=x_{\alpha}) = \varepsilon \cdot \sigma \cdot (\vartheta^4 - \vartheta_{\alpha}^4)

\begin{align*}
\alpha & \quad \text{konvektiver Wärmeübergangskoeffizient} \ [\text{W/(m}^2 \cdot \text{K})] \\
\varepsilon & \quad \text{Emissionswert} \\
\sigma & = 5.6704 \cdot 10^{-8} \text{ W/(m}^2 \cdot \text{K}^4) \quad \text{Stefan-Boltzmann-Konstante}
\end{align*}

Die Wärmemetransportgleichung für den Brandfall berücksichtigt nicht die Dirichlet'sche und Neumann'sche Randbedingung, da am Querschnittsrand weder eine definierte Temperatur noch ein bestimmter Temperaturstrom vorgegeben werden kann. Es wird über Konvektion und Strahlung eine zeitlich veränderliche Brandkurve eingesteuert. Derzeit ist in den pcae-Programmen die Einheits-Temperatur-Zeitkurve (s. z.B. DIN 4102 T.2, 6.2.4) implementiert:
Die allgemeine Lösung kann nur mit Hilfe von Näherungs-verfahren ermittelt werden. In den pcae-Programmen kommt eine semidiscrete Finite-Volumen-Formulierung (FVM) zur Anwendung, d.h. die Ortsdiskretisierung erfolgt durch die finite Volumenmethode, während in Zeitrichtung ein explizites Differenzenverfahren angewandt wird. Vorteilhaft an FVM ist die lokale Konservativität (hier: Temperatur- bzw. Energieerhaltung) um jeden Zellknoten herum, da die Differentialgleichung in jedem Kontrollvolumen erfüllt sein muss.

Zunächst wird der Querschnitt diskretisiert; es wird ein rechteckiges Gitter zu Grunde gelegt. Für jeden Gitterknoten (Zellknoten) wird ein Kontrollvolumen definiert, über dem die Differentialeigleichung integriert wird.

Beispiel einer Kreisdiskretisierung (Ausschnitt):

Je feiner der Querschnitt durch finite Volumen aufgelöst wird, desto glatter können die Isolinien der Temperatur ermittelt werden.

Diese Genauigkeit ist allerdings in den meisten Fällen nicht erforderlich.

Es ist üblich, das Kontrollvolumen aus den Vertikalen der Mittelpunkte der Zellkanten zu bilden.

Die Zeitdiskretisierung erfolgt explizit mit konstanten Zeitschritten, daher ist als Stabilitätsbedingung das Neumann-Kriterium einzuhalten:

\[Ne = \frac{\lambda(t) \cdot \Delta t}{\min(\Delta x^2, \Delta y^2)} \leq 0.5 \]

Der Zeitschritt wird automatisch an die Gegebenheiten angepasst.

Folgende Parameter sind festzulegen:

- Die Brandseiten eines Rechteckquerschnitts beziehen sich auf das lokale Koordinatensystem (s. Grafik). Bei zweiachsiger Bemessung kann willkürlich gewählt werden.
- Die Beflammungsdauer steuert die zu erstrebenden Feuerwiderstandsklasse. R 90 entspricht z.B. einer Branddauer von \(t_{\text{max}} = 90 \text{ min} \).
- Die Anfangsfeuchte des Betons hemmt die Ausbreitungsgeschwindigkeit der hohen Temperaturen. Sie geht in die Ermittlung der spezifischen Wärme ein.
- Im EC 2 werden zwei Kurven zur Bestimmung der thermischen Leitfähigkeit des Betons angeboten, die im Programm frei wählbar sind. Nach Anhang A(2) ergibt der untere Grenzwert realistischere Betontemperaturen als der obere.
- Der Zuschlagstoff des Betons beeinflusst das Querschnittsverhalten und ist daher stets mit anzugeben.
- Die Rohdichte von Stahlbeton enthält auch den Anteil der Bewehrung und ist daher stets gleich oder größer als die Dichte des Betons.
Die Temperatur wird über Konvektion und Strahlung in den Querschnitt eingeleitet. Hierzu sind die entsprechenden Parameter des konvektiven Wärmeübergangs und der Emissionswert einzugeben. Werden sowohl α als auch ε mit Null belegt, wird die Temperatur als Dirichlet'sche (direkte) Randbedingung aufgebracht.

Es besteht die Möglichkeit, die Stoffparameter auch nach der Vornorm des EC 2 (DIN ENV 1992-1-2 (5.97)) berechnen zu lassen.

4.2 Mechanische Analyse - Bemessungsverfahren

4.2.1 Zonenmethode

Das Zonenverfahren basiert auf der Annahme einer beidseitig beflammen Modellwand. Der Querschnitt wird in eine festgelegte Anzahl von n Zonen gleicher Breite eingeteilt. Im zentralen Horizontalschnitt wird für jede Zone i die Mittentemperatur $\theta_{c,i}$ und daraus der Reduktionsbeiwert $k_{c,i} = f_{ck,i}/f_{ck}$ ermittelt. Über

$$k_{cm} = \frac{1 - 0.2/n}{n} \sum_{i=1}^{n} k_{c,i}$$

kann dann eine mittlere Betontemperatur θ_{cm} berechnet werden, die gleichmäßig in dem um reduzierten Querschnitt gilt. Die Breite w entspricht der halben Modellwandbreite, $k_c(\bar{\theta}_M)$ ist der Reduktionskoeffizient für Beton in der Mittelachse der Modellwand.

In *pcae*-Programmen wird die Betontemperatur je Zone über deren Breite gemittelt. Daher kann der Korrekturbeiwert $1 - 0.2/n$ zur Berechnung des mittleren Reduktionsfaktors k_{cm} entfallen. Zudem besteht die Möglichkeit, den a_z-Wert vorzugeben (z.B. nach EC 2, Anhang B.2, Bild B.5, oder Vororm des EC 2 (ENV), Anhang B, Bild B.3).

Zur Bemessung wird die über den reduzierten Querschnitt integrierte, mittlere Betontemperatur herangezogen. Optional kann auch die Temperatur des kältesten Querschnittspunktes (Mittelpunkt) herangezogen werden. Für diese Temperatur wird über den Beiwert k_c die charakteristische Druckfestigkeit unter Hochtemperaturbelastung bestimmt.

Die Temperatur der Bewehrung kann genügend genau im Schwerpunkt des Betonstahls angenommen werden. Sie beeinflusst den Abfall der charakteristischen Zug- und Druckfestigkeit f_y der Bewehrung. Näherungsweise und auf der sicheren Seite liegend wird der Abminderungsbeiwert k_s der Bewehrung immer für gedrückten Stahl angesetzt.
Die Form der Spannungsdehnungslinien kann entweder analog der Kaltbemessung oder nach EC 2 (Brandfall, Kap. 3.2 bzw. ENV, Anhang A) gewählt werden. Um die inneren Spannungen aus Temperatur zu berücksichtigen, werden die Spannungsdehnungslinien in Abhängigkeit ihrer Temperatur vorgestaucht, d.h. die Spannungsdehnungslinien werden um den Wert $\varepsilon_{V,\theta}$ verschoben.

Cyllok/Achenbach (s. Literatur) nehmen für die Bemessungstemperatur des Betons die Temperatur im Mittelpunkt des Querschnitts θ_M $\geq 100^\circ$C an. Die Form der Spannungsdehnungslinien entspricht dem EC 2 (Brandfall), wobei die Spannungsdehnungslinie der Bewehrung auf der Druckseite eine Druckspannungsreduktion von $\Delta \vartheta = 0.2\% \cdot E_{x,\theta}$ erfährt.

4.2.2 Vereinfachtes allgemeines Rechenverfahren

Dieses Verfahren bietet eine Möglichkeit, auch allgemeine Querschnittsformen brandschutztechnisch zu beurteilen. Wie zuvor besteht das Problem in der Bestimmung der mittleren Betontemperatur und der geschädigten Randzone.

Die geschädigte Randzone sei der Bereich des Querschnitts, in dem die Temperatur einen kritischen Wert übersteigt. Sie kann vom Benutzer vorgegeben werden. $pcaer$ empfiehlt $\theta_{crit} = 500^\circ$C.

Die Betontemperatur wird wie beim Zonenverfahren über den reduzierten Querschnitt aufintegriert. Ebenso können die Spannungsdehnungslinien nach der Kaltbemessung oder EC 2 (Brandfall) angenommen werden.

Die Bemessung erfolgt im Grenzzustand der Tragfähigkeit.

Bei hochfestem Beton (von C55/67 bis C90/105) wird eine Reduzierung der Festigkeit nach EC 2, Tabelle 6.1N, vorgenommen.

Der unwirksame Querschnittsbereich ermittelt sich nach dem vereinfachten allgemeinen Rechenverfahren zu $a_z = k \cdot a_{500}$, mit k aus dem Nationalen Anwendungsdocument.

Der empfohlene Wert ist 1.1 für Klasse 1 und 1.3 für Klasse 2. Die empfohlene Klasse für Beton C55/67 und C60/75 ist Klasse 1, für Beton C 70/85 und C 80/90 ist Klasse 2 und für Beton C 90/105 ist Klasse 3.

4.3 Spannungsdehnungsbeziehungen unter Hochtemperaturbelastung

Die Verformungen spielen bei den Nachweisen zur Heißbemessung eine wesentliche Rolle. Da sich Beton und Stahl in unterschiedlichen Temperaturbereichen befinden und unterschiedliches Dehnungsverhalten aufweisen, führt eine Erwärmung des Materials auch zu unterschiedlichen thermischen Dehnungen. Dadurch ergeben sich im Querschnitt Eigenspannungen, die bei der Definition der Spannungsdehnungsbeziehungen zu berücksichtigen sind. In den $pcaer$-Programmen wird die temperaturbedingte Dehnung als Vorverformation ε_v, bei unsymmetrischen Zuständen auch als Vorkrümmung des Betonquerschnitts, definiert.
Außerdem wird nicht - wie im EC 2 vorgeschlagen - der Bruchzustand (Beton $\varepsilon_{\text{cut},\alpha}$ bzw. Betonstahl $\varepsilon_{\text{su},\alpha}$) als Grenzzustand angenommen sondern bereits das Erreichen der maximalen Festigkeit (Beton $\varepsilon_{\text{ct},\alpha}$ bzw. Betonstahl $\varepsilon_{\text{st},\alpha}$).

5 Druckzonendicke / Nachweis der Dichtigkeit

- Nachweis der Dichtigkeit in ungerissenen Bereichen
- Nachweis der Mindestdruckzonendicke
- Rissbreitennachweis als Dichtigkeitsnachweis

5.1 DAfStb-Richtlinien "Wasserundurchlässige Bauwerke"

Der Nachweis der Dichtigkeit des Betons ist mit den Bemessungsrößen aus der "häufigen" Einwirkungskombination nach DIN 1055-100 zu führen ist. Der Nachweis der Dichtigkeit in ungerissenen Bereichen entfällt.

5.1.1 Nachweis der Mindestdruckzonendicke

Die Druckzonendicke im Zustand 2 wird für den schlussendlich erforderlichen Bewehrungsquerschnitt aus dem Dehnungszustand ermittelt. Für den Dichtigkeitsnachweis ist zu belegen:

\[x^{II} \geq x_D \text{ mit } x^{II} \text{ geringste Dicke der ungerissenen Zone im Zustand 2} \]

\[zul_xD \text{ zulässige minimale Druckzonendicke} \]

5.1.2 Rissbreitennachweis als Dichtigkeitsnachweis

5.2 DAfStb-Richtlinien "Betonbau beim Umgang mit wassergefährdenden Stoffen"

Die Einwirkungskombination vor der Beaufschlagung entspricht der "seltenen" Kombination nach DIN 1055-100, während der Beaufschlagung ist die "quasi-ständige" Kombination anzusetzen.

5.2.1 Nachweis der Dichtigkeit in ungerissenen Bereichen

Zur Sicherstellung der Dichtigkeit muss gelten

\[h \geq \gamma_e \cdot e_{ik} \text{ mit } \gamma_e \text{ Sicherheitsbeiwert für die Eindringtiefe } e_{ik}. \]

Der Nachweis darf nur in Bereichen angewandt werden, in denen gilt

\[\frac{\text{vorn } \sigma_{CN}}{f_{ctk;0.05}/\gamma_c} + \frac{\text{vorn } \sigma_{CM}}{f_{ckb;0.05}/\gamma_c} \leq 1.0 \text{ mit } \]

\[\gamma_c \text{ Sicherheitsbeiwert für das Betontragverhalten} \]

\[f_{ckb;0.05} = \left(1 + 0.13 \cdot \sqrt{1/h}\right) \cdot f_{ctk;0.05} ; h \text{ in } m \]

Stahlbetontheorie
5.2.2 Nachweis der Mindestdruckzonendicke

Die Druckzonendicke im Zustand 2 wird für den schlussendlich erforderlichen Bewehrungsquerschnitt aus dem Dehnungszustand ermittelt.

Für den Dichtigkeitsnachweis ist zu belegen:

\[x'' \geq \gamma_e \cdot e_{ik} \quad \text{mit} \]

\[x'' \quad \text{geringste Dicke der ungerissenen Zone im Zustand 2} \]

\[\gamma_e \quad \text{Sicherheitsbeiwert für die Eindringtiefe } e_{ik} \]

5.2.3 Rissbreitennachweis als Dichtigkeitsnachweis

Die Rissbreite ist unter Berücksichtigung der im Fall der Medienbeaufschlagung wirksamen Beanspruchungen unter Gebrauchslasten zu begrenzen auf

\[w_{cal} \leq w_{crit} / \gamma_r \quad \text{mit} \]

\[w_{crit}(h,t) \quad \text{kritische Rissbreite} \]

\[\gamma_r \quad \text{Sicherheitsbeiwert für die Rissbreite} \]

Dieser Nachweis kann als Rissnachweis (Abs. 7, S. 39 ff.) mit \(w_{cal} = w_{crit} / \gamma_r \) geführt werden.
Schubbemessung

Anmerkungen zum EC 2: Der deutsche Nationale Anhang des Eurocodes wird in den pcae-Programmen derzeit nicht unterstützt. Sämtliche Parameter, die nicht frei eingebbar sind, folgen somit der Empfehlung des Eurocodes.

Die Schubbemessung gliedert sich in die Bemessung für Querkraft sowie Querkraft + Torsion. Zunächst wird separat für jede Schnittgröße die erforderliche Bügel- (Querkraft $a_{s,bü}$) bzw. Bügel- und Längsbewehrung (Torsion $a_{s,büT}$ und $A_{s,T}$) ermittelt. Anschließend werden die Bewehrungsquerschnitte anteilig ausgewertet.

6.1 Schubbemessung DIN 1045 (7.88), 17.5

Die Bügelbewehrung steht senkrecht auf der Längsbewehrung. Der Sicherheitsbeiwert für Schub beträgt $\gamma_{Schub} = 1.75$.

6.1.1 Querkraftbemessung

Die Querkraftbemessung hängt entscheidend vom Querschnittszustand (Zustand 1 - ungerissen, voll überdrückt oder Zustand 2 - gerissen) ab.

Bei einem gerissenen Querschnitt wird nach Mörsch zunächst der Grundwert der Schubspannung $r_0 = Q/(b_0 \cdot z)$ ermittelt, der von der Lage der Dehnungsnulllinie (k_x und k_z entweder ermittelt aus der Biegebemessung oder unter Annahme eines reinen Biegezustands) abhängig ist. Als wirksame Breite b_0 wird die Querschnittsbreite in Höhe der Dehnungsnulllinie betrachtet. Die einzuhal tenden Grenzen der Grundwerte der Schubspannung (Tab. 13) richten sich danach, ob das Bauteil als Platte (keine Querkraftbewehrung im Schubbereich 1) oder als Balken (Mindestquerkraftbewehrung im Schubbereich 1) betrachtet wird.
Tab. 13: Grenzen der Grundwerte der Schubspannung \(\tau_0 \) in N/mm\(^2\) unter Gebrauchslast

Bei Platten geht zusätzlich ein, ob die Feldbewehrung „gestaffelt“ eingelegt wird, und ob \(\max Q \) und \(\max M \) an der gleichen Stelle auftreten (Faktor \(k_i \)). Reduzierte Grenzschubspannungen ergeben sich bei einer Ergänzung von Fertigteilen mit Ortbeton.

Die Größe von \(\tau_0 \) ist ausschlaggebend für den Schubbereich und damit für den Bemessungswert \(\tau \), für den die Bügelbewehrung \(a_{sb} \) bestimmt wird.

Bei Plattenbalken und Doppel-T-Querschnitten werden die abstehenden Querschnittsteile (Gurte) nach 18.8.5 zusätzlich bemessen. Dazu ist für die Bemessung des Zugflansches der in die Gurte ausgelagerte Bewehrungsanteil anzugeben.

Bei Flächentragwerken (Platte oder Faltwerk) sollte möglichst auf eine Schubbewehrung verzichtet werden. Da die Querkraftverteilung i. A. nicht mit der Bewehrungsanordnung übereinstimmt, wird die Hauptquerkraft nachgewiesen und nach Bedarf bemessen. Dazu werden die benötigten Parameter näherungsweise entweder als Minimalwerte sämtlicher zu einem Lastfall gehörenden Transformationskombinationen (Standardfall) oder unter Annahme eines reinen Biegezustands (s. o.) ermittelt.

Ist der Querschnitt überdrückt (d. h. die maximale Stahldehnung ist entweder \(\varepsilon_{eb2} \leq 0 \) oder \(\varepsilon_{eb} \leq 0 \), frei eingebbar), wird für die Hauptzugspannung nach Mohr \(\tau = \sigma_{II} \) bemessen. Diese ergibt sich für baupraktische Zwecke ausreichend genau zu

\[
\sigma_{II} = 0.5 \cdot \left(\sigma_x + \sqrt{\sigma_x^2 + 4 \cdot \tau^2} \right)
\]

mit \(\sigma_x = \frac{N}{A} + \frac{M \cdot z}{l} \) und \(\tau = \frac{Q \cdot S}{I \cdot b} \)

6.1.1.1 Verfahren nach Heft 400, DAfStb

Bei der Berechnung der schiefen Hauptzugspannungen im Zustand 1 wird eine Neigung der Druckstrebe von 45° zugrunde gelegt, so dass sich \(\sigma_{II} \) folgendermaßen berechnet:

\[
\sigma_{II} = \tau \geq 0.4 \cdot \tau_0 = \frac{0.4 \cdot Q_m}{b_s \cdot z_s} \quad \text{mit } z_s = \text{innerer Hebelarm}
\]

Bei der Annahme lotrechter Bügel und bei einer empfohlenen Druckfeldneigung von mindestens tan \(\varphi = 0.4 \) berechnet sich die schiefen Hauptdruckspannung im Zustand 2 \(\sigma_{2II} \) aus \(\tau_0 \) zu

\[
\sigma_{2II} = \frac{\tau_0}{\sin \varphi \cdot \cos \varphi} = 2.9 \cdot \tau_0
\]

Die Begrenzung der Hauptdruckspannung wird n. DIN 1045 (7.88) mit \(\sigma_{2II} \leq 2 \cdot \tau_0 \) angegeben.
6.1.2 Verfahren nach Grasser und Heft 320, DAFStb

Die Ermittlung der Neigung des Druckfeldes im Zustand 2 erfolgt zu
\[\tan \theta = \tan \vartheta \cdot \left(1 - \frac{\Delta r}{r_1} \right) \geq 0.4 \]
mit \(\Delta r = 0.6 \cdot r_{02} \), \(r_1 = \frac{Q_m}{b_1 \cdot z_s} \) und \(\tan \vartheta = \frac{\sigma_1}{r_1} \)

Die Berechnung von \(\sigma_{2II} \) erfolgt bei Annahme lotrechter Bügel wie im Heft 400 mit dem neu berechneten Neigungswinkels \(\vartheta \)
\[\sigma_{2II} = r_0 / \left(\sin \theta \cdot \cos \vartheta \right) \]

Nach Heft 320 sind auch Neigungswinkel von \(\tan \theta < 0.4 \) zugelassen.

6.1.2 Torsionsbemessung

Die Torsionsbemessung ist nur dann durchzuführen, wenn der Grundwert \(r_T \) die Werte 0.25 \cdot r_{02} (s. Tab. 13) überschreitet. Der Grundwert ist mit den Querschnittswerten nach Zustand 1 zu ermitteln und darf die Werte r_{02} nicht überschreiten. Aufgrund des gedachten räumlichen Fachwerks mit unter 45° geneigten Druckstreben ergibt sich eine Bügelbewehrung \(a_{s,buT} \) und eine Längsbewehrung \(A_{s,T} \).

6.1.3 Bemessung für Querkraft und Torsion

Der Nachweis von Querkraft und Torsion ist erfüllt, wenn
\[\frac{r_0 + r_T}{r_{02}} \leq 1.3 \]
für Bauteildicken \(\geq 30 \text{ cm} \), bzw.
\[\frac{r_0 + r_T}{r_{02}} \leq 1.3 \]
für Bauteildicken < 30 cm.

Die Bewehrungsanteile aus den Einzelnachweisen werden folgendermaßen addiert
- Bügelbewehrung \(a_{s,buT} + 2 \cdot a_{s,buT} \) (für zweiachsigige Bügel)
- Längsbewehrung \(A_{s,T} \)

6.2 Schubbemessung DIN 1045-1, 10.3 u. 10.4 / DIN-Fb 102, 4.3.2 u. 4.3.3 / EC 2, 6.2 u. 6.3 / ÖN B 4700, 3.4.4 u. 3.4.6

Die in die Bemessung eingehenden Schnittgrößen sind Bemessungsgrößen.
6.2.1 Querkraftbemessung

Die Schubbemessung gliedert sich in die Bemessung für Querkraft, Torsion und Querkraft + Torsion. Die Bügelbewehrung kann um den Winkel \(\alpha \) gegen die Systemachse geneigt sein.

Zunächst wird der Bemessungswert der Querkrafttragfähigkeit \(V_{Rd,ct} \) (Abschn. 10.3.3) berechnet. Wenn der Bemessungswert der Querkraft \(V_{Ed} \leq V_{Rd,ct} \) ist, ist rechnerisch keine Querkraftbewehrung erforderlich. Bei überwiegend auf Biegung beanspruchten stabförmigen Bauteilen (Balken) ist jedoch grundsätzlich eine Mindestbügelbewehrung für die Querkraft n. Abschn. 13.2.3(5) anzuordnen.

6.2.1.1 Bemessungswert der ohne Querkraftbewehrung aufnehmbaren Querkraft

\[
V_{Rd,ct} = \frac{0.15}{\gamma_c} \cdot \kappa \cdot \eta_1 \cdot \left(100 \cdot \rho \cdot f_{ck}\right)^{1/3} \cdot 0.12 \cdot \sigma_{cd} \cdot b_w \cdot d \quad \text{mit}
\]

\[\gamma_c\] Sicherheitsbeiwert für den Beton
\[\kappa = 1 + \frac{\sqrt{200/d}}{2} \leq 2.0\]
\[\eta_1 = 0.40 + 0.60 \cdot \rho/2200 \quad \text{in kg/m}^3, \text{für Normalbeton } \eta_1 = 1.0\]
\[\rho = A_w/(b_w \cdot d) \leq 0.02 \quad \text{Längsbewehrungsgrad innerhalb der Zugzone des Querschnitts} \]

(überdrückte Querschnitte \(\rho = 0 \))
\[b_w \quad \text{wirksame Querschnittsbreite in mm}\]
\[d \quad \text{statische Nutzhöhe der Biegebewehrung im betrachteten Querschnitt in mm}\]
\[\sigma_{cd} = N_{Ed}/A_c \quad \text{Bemessungswert der Betonlängsspannung im Schwerpunkt in N/mm}^2\]
\[N_{Ed} \quad \text{Bemessungswert der Längskraft} \quad \text{(N} < 0 \text{ als Längsdruckkraft)}\]

Als wirksame Breite \(b_w \) wird die minimale Querschnittsbreite in Höhe der resultierenden inneren Schnitträgen (entweder res. Betondruckkraft oder res. Stahlzugkraft) betrachtet.

Der \(V_{Rd,ct} \)-Wert darf auf einen Mindestwert begrenzt werden (nicht DIN 1045-1 (7.01)) von

\[
V_{Rd,ct} = \left[\eta_1 \cdot \nu_{min} - 0.12 \cdot \sigma_{cd}\right] \cdot b_w \cdot d \quad \text{mit} \quad \nu_{min} = \frac{\kappa_k}{\gamma_c} \cdot \sqrt{\frac{3}{2} \cdot f_{ck}} \quad \text{und}
\]

\[\kappa_k = 0.0525 \quad \text{für } d \leq 600\text{mm}\]
\[0.0375 \quad \text{für } d \geq 800\text{mm}\]

\(\nu_{min} \), dazwischen linear interpolieren

begrünnt werden. Bei einer Bemessung nach DIN 1045-1 (7.01) kann der Mindestwert nach DIN-Fb 102 berücksichtigt werden.

ÖN B 4700

Nach 3.4.4.4(1) darf eine Bewehrung zur Aufnahme der schrägen Zugkräfte entfallen, wenn gilt:

\[
V_{Rd,ct} = \left[\tau_d \cdot \kappa_c \cdot \left(1.2 + 40 \cdot \rho\right) + 0.15 \cdot \sigma_{cd}\right] \cdot b_w \cdot d \quad \text{mit}
\]

\[\tau_d \quad \text{Rechenwert der Schubspannung gemäß Tab. 4. Bei frei gewählten Materialparametern wird } \tau_d \text{ programmintern ermittelt mit } \tau_d = 0.09 \cdot f_{ck}^{1/3}\]
\[\kappa_c = 1.0 \quad \text{(vereinfachend)}\]

EC 2

Der Bemessungswert des Querkraftwiderstandes ergibt sich n. 6.2.2(1) zu

\[
V_{Rd,ct} = \left[C_{Rd,c} \cdot \kappa \cdot \left(100 \cdot \rho \cdot f_{ck}\right)^{1/3} + k_1 \cdot \sigma_{cp}\right] \cdot b_w \cdot d \quad \text{mit mindestens}
\]

\[
V_{Rd,ct} = \left[\nu_{min} + k_1 \cdot \sigma_{cd}\right] \cdot b_w \cdot d \quad \text{mit} \quad \sigma_{cp} = \frac{N_{Ed}}{A_c} \leq 0.2 \cdot f_{cd}
\]

Dabei können die Faktoren \(C_{Rd,c} \), \(\nu_{min} \) und \(k_1 \) einem nationalen Anhang entnommen werden. Voreingestellt sind

\[C_{Rd,c} = 0.18/\gamma_c \quad \nu_{min} = 0.035 \cdot k^{3/2} \cdot f_{ck}^{1/2} \quad k_1 = 0.15\]

Schubbemessung
6.2.1.2 Besonderheiten bei einer "Platten"-Bemessung

Bei der Plattenbemessung als rein biegebeanspruchtes Bauteil, das bei $V_{Ed} \leq V_{Rd,ct}$ ohne Mindestbewehrung (13.3.3(2)) auskommt, spielt der Zug-Längsbewehrungsgrad ρ_l eine entscheidende Rolle.

Das Programm bietet mehrere Möglichkeiten, die in die Bemessung eingingende Längsbewehrung zu berücksichtigen. Sie kann entweder vom Anwender direkt vorgegeben (als A_{sl} im Eigenschaftsblatt) oder aus der Biegebemessung unter Berücksichtigung der Grundbewehrung ($A_{sl} = \max(A_s, A_{so})$) übernommen werden.

Als dritte Möglichkeit bietet das Programm eine automatische Erhöhung der Längsbewehrung an (Aktivierung des Buttons Schubbewehrung vermeiden), die nur an den fraglichen Stellen und nur in der notwendigen Höhe die Längsbewehrung (natürlich nur bis zum erlaubten Grenzwert) erhöht.

Zu Besonderheiten bei der Schubbemessung unbewehrter Betonquerschnitte s. Abs. 12, S. 57.

6.2.1.3 Bemessungswert der durch die Tragfähigkeit der Querkraftbewehrung begrenzten aufnehmbaren Querkraft

Wenn gilt $V_{Ed} > V_{Rd,ct}$, ist eine Querkraftbewehrung derart vorzusehen, dass $V_{Ed} \leq V_{Rd,sy}$ (Abschn. 10.3.4 (4)) ist.

$V_{Rd,sy} = a_{sb,byd} \cdot f_{yd} \cdot z \cdot (\cot \theta + \cot \alpha) \cdot \sin \alpha / a_k$ mit

- z innerer Hebelarm im betrachteten Bauteilabschnitt
- $0.5 \leq a_k \leq 1.0$ Wirksamkeitsfaktor der Rundbügel (nur bei Kreisquerschnitten)

Der innere Hebelarm z ist eine entscheidende Größe bei der Querkraftbemessung. Er kann derzeit auf drei verschiedene Arten angenommen werden:

1. z aus der Biegebemessung des zugehörigen N,M-Lastfalls
2. nach 10.3.4(2) mit $z = 0.9 \cdot d - 2 \cdot c_{v,D} \leq d - c_{v,D} - 30$ mm (nur bei geringer Normalkraftbeanspruchung)
3. z aus der Biegebemessung (wie 1.) mit der Einschränkung $z \leq d - 2 \cdot c_{v,D} \leq d - c_{v,D} - 30$ mm aus 10.3.4(2)

$c_{v,D}$ Betondeckung der Längsbewehrung in der Betondruckzone (Verlegemaß)

Besonderheiten:

- Ist der zugehörige N,M-Lastfall $= 0$, wird angenommen $z = 0.9 \cdot d$ mit $d = h - \max(h_{so}, h_{su})$; bei Kreisquerschnitten $d = r_g$.
- Ist der Querschnitt überdrückt, wird der innere Hebelarm berechnet zu $z = I/S$ (I Trägheitsmoment, S statisches Moment um die Schwerachse).
- Ist der Querschnitt überzogen, ergibt sich z zum Abstand der Bewehrungslagen.
- Ist $c_{v,D} = 0$, wird $c_{v,D} = h_y - 10$ mm ≤ 3 cm berechnet (Annahme einer einlagigen Druckbewehrung mit dem Längsstabdurchmesser $d_s = 20$ mm).
- Ist $c_{v,D} > 3$ cm, wird die Einschränkung begrenzt auf $z \leq d - c_{v,D} - 3$ cm.
- Bei Kreisquerschnitten ist bei überzogenem Querschnitt $z = \frac{4}{\pi} (r_g - h_{sa})$.

ÖN B 4700

Zu 2.: Es darf $z = 0.9 \cdot d$ angenommen werden, wenn keine nennenswerte Normalkraft wirkt (3.4.4.2(3)). 3. entfällt.

EC 2

Zu 2.: Es darf $z = 0.9 \cdot d$ angenommen werden, wenn keine Normalkraft wirkt (6.2.3(1)). 3. entfällt.
6.2.1.4 Berechnung des Druckstrebenwinkels

Der Bemessungswert der aufnehmbaren Querkraft \(V_{Rd,\text{sy}} (a_{sb0}) \) ist abhängig von der Neigung der Querkraftbewehrung \(\alpha \) und der Neigung der Druckstreben \(\cot \Theta \cdot \alpha \) und \(\Theta \) sind im Eigenschaftsblatt vorzugeben, werden aber programmintern auf ihre Grenzwerte hin überprüft und bei Bedarf angepasst (s. Ausgabeprotokoll).

Grenzwerte der Neigung der Querkraftbewehrung:
\[45^\circ \leq \alpha \leq 90^\circ \]

Grenzwerte der Neigung der Druckstreben:
\[\cot 60^\circ \leq \cot \beta \leq \frac{1.2 - 1.4 \cdot \frac{\sigma_{cd}}{f_{cd}}}{1 - V_{Rd,c} / N_{Ed}} \leq 3.0 \text{ für Normalbeton} \]
\[\leq 2.0 \text{ für Leichtbeton} \]
mit
\[V_{Rd,c} = \beta \cdot ct \cdot 0.10 \cdot \eta_{t} \cdot f_{ck}^{1/3} \cdot (1 + 1.2 \cdot \frac{\sigma_{cd}}{f_{cd}}) \cdot b_{w} \cdot z \]
\[\beta_{cd} = 2.4 \]

Je kleiner \(\Theta \) gewählt wird, desto weniger Bewehrung ergibt sich. Allerdings wirkt sich \(\Theta \) umgekehrt proportional bei der Berechnung der Verankerungslängen der Längsbewehrung (Zugkraftdeckungsline 13.2.2) aus!

Vereinfachend darf nach 10.3.4(5) für
- reine Biegung oder Biegung und Längsdruckkraft \(\Theta = 40^\circ \) (\(\cot \Theta = 1.2 \))
- Biegung und Längszugkraft \(\Theta = 45^\circ \) (\(\cot \Theta = 1.0 \))
angenommen werden.

ÖN B 4700
Nach 3.4.4.2(7) gilt i. A. \(\sigma_{sd} = f_{yd} \) \(0.6 \leq \tan \Theta \leq 1.6 \). Wenn die Spannung der am Biegezugrand angeordneten Längsbewehrung keine Zugspannung ist und keine Torsion vorliegt, darf gelten \(0.4 \leq \tan \Theta \leq 2.5 \). Zwischenwerte von \(0 < \sigma_{sd} < f_{yd} \) dürfen linear interpoliert werden.

EC 2
Der landesspezifische Wert für \(\cot \Theta \) darf einem nationalen Anhang entnommen werden (6.2.3(2)). Voreingestellt ist \(1.0 \leq \cot \Theta \leq 2.5 \)

6.2.1.5 Bemessungswert der durch die Druckstrebenfestigkeit begrenzten aufnehmbaren Querkraft

Der Bemessungswert der einwirkenden Querkraft darf in keinem Querschnitt des Bauteils den Wert \(V_{Rd,\text{max}} \) überschreiten (Abschn. 10.3.4 (6)).
\[V_{Rd,\text{max}} = b_{w} \cdot z \cdot \alpha_{c} \cdot f_{cd} \cdot \cot \Theta + \cot \alpha \cdot \frac{1}{1 + \cot^{2} \Theta} \quad \text{mit} \quad \alpha_{c} = 0.75 \cdot \eta_{t} \]

Wird jedoch eine Grundbewehrung \(a_{sb0} \) vorgegeben, die größer als die erforderliche Querkraftbewehrung ist, so darf die Druckstrebenneigung \(\cot \Theta \) zur Ermittlung von \(V_{Rd,\text{max}} \) um den Anteil \(\frac{a_{sb}/a_{sb0}}{a_{sb0}} \) reduziert werden.

Da \(V_{Rd,\text{max}} \) von \(\Theta \) abhängt, wird im Falle von \(V_{Rd,\text{max}} > V_{Ed} \) der Winkel \(\Theta \) innerhalb seiner Grenzen variiert bis gilt \(V_{Ed} = V_{Rd,\text{max}} \).

ÖN B 4700
Nach 3.4.4.2(9) gilt
\[V_{Rd,\text{max}} = b_{w} \cdot z \cdot \nu \cdot f_{cd} \cdot (\cot \Theta + \cot \alpha) \cdot \sin^{2} \Theta \leq 0.7 \cdot b_{w} \cdot z \cdot \nu \cdot f_{cd} \quad \text{mit} \quad \nu = 0.7 \cdot \frac{1.5 \cdot f_{cd}}{200} \geq 0.5 \].

Für Bauteile unter Längsdruck muss der Bemessungswert des Widerstandes gegen Querkraft abgemindert werden zu
\[V_{Rd,\text{max,red}} = 1.67 \cdot \left(1 - \frac{\sigma_{cd,\text{eff}}}{f_{cd}} \right) \leq V_{Rd,\text{max}} \quad \text{mit} \]

Schubbemessung
\[
\sigma_{cd,eff} = \frac{N_{Ed} \cdot f_{yd} \cdot A_{s2}}{A_c}, \quad A_{s2} \text{ als Bewehrung auf der Druckseite.}
\]

EC 2

Nach 6.2.3(3) und (4) gilt:

\[
V_{Rd,max} = \alpha_{cw} \cdot b_w \cdot z \cdot v_1 \cdot f_{cd} \cdot \frac{\cot \Theta + \cot \alpha}{1 + \cot^2 \Theta}
\]

Die landesspezifischen Werte \(v_1 \) und \(\alpha_{cw} \) dürfen einem nationalen Anhang entnommen werden.

Voreingestellt sind \(v_1 = 0.6 \left(1 - \frac{f_{ck}}{250} \right) \) und \(\alpha_{cw} = 1.0 \).

6.2.1.6 Querkraftausnutzung

DIN 1045-1

Die Querkraftausnutzung wird nach Tab. 31 wie folgt ermittelt:

<table>
<thead>
<tr>
<th>Bereich</th>
<th>Berechnungsgrundlage</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB 1</td>
<td>(V_{Ed} \leq 2/5 \cdot V_{Rd,max})</td>
</tr>
<tr>
<td>AB 2</td>
<td>(V_{Ed} \leq 2/3 \cdot V_{Rd,max})</td>
</tr>
<tr>
<td>AB 3</td>
<td>(V_{Ed} > 2/3 \cdot V_{Rd,max})</td>
</tr>
</tbody>
</table>

ÖN B 4700

| AB 1 | \(V_{Ed} \leq 1/3 \cdot V_{Rd,max} \) |
| AB 2 | \(V_{Ed} > 1/3 \cdot V_{Rd,max} \) |

EC 2

| AB 1 | \(V_{Ed} \leq 1/3 \cdot V_{Rd,max} \) |
| AB 2 | \(V_{Ed} > 1/3 \cdot V_{Rd,max} \) |

6.2.1.7 Besonderheiten bei der Ausnutzung von Gitterträgern

Soll die Querkraftbewehrung mit Gitterträgern (s. Abs. 1.4.2, S. 12) ausgeführt werden, wird programmiert eine Zugfestigkeit der Bewehrung von \(f_{yk} = 420 \text{ N/mm}^2 \) angesetzt.

Die zulässige Größe des Druckstrebenwinkels ist in der jeweiligen Zulassung geregelt; daher wird bei Gitterträgern \(\max \cot \Theta_{zu} \) nicht überprüft:

\[
1.0 \leq \cot \Theta_{Gitterträger} \leq 3.0 \text{ für Normalbeton}
\]

\[
1.0 \leq \cot \Theta_{zu} \leq 2.0 \text{ für Leichtbeton}
\]

Weiterhin ergibt sich die Grenze des Ausnutzungsbereiches 1 in Tab. 31 (d.h. bis zu welcher Belastung die Querkraftbewehrung als reine Gitterträgerkonstruktion ohne Bügel ausgeführt werden darf) zu

\[
V_{Ed} \leq \begin{cases}
0.25 \text{ für } \alpha < 55^\circ \\
0.30 \left(1 + \sin\left(55^\circ - \alpha\right)\right) \text{ für } \alpha \geq 55^\circ
\end{cases} \cdot V_{Rd,max}
\]

6.2.2 Zweiachsige Querkraftbeanspruchung (geneigte Querkraft)

Die Bemessung kann auf zwei im Folgenden beschriebene Arten erfolgen.

6.2.2.1 Bemessung der Querkraftkomponenten

6.2.2.2 **Bemessungsansatz von Peter Mark**

Unter den Bedingungen
- Rechteckquerschnitt
- keine Normalkraft
- innerer Hebelarm aus Biegebemessung

can der Ansatz von P. Mark durchgeführt werden.

Vergrößerung der Bügelkräfte um den Faktor

\[
1 \leq 1 + \left[\frac{2}{\sqrt{(b/h)^2 + 1}} \right] \cdot \alpha_k^b < 2
\]

Verringerung der maximalen Druckstrebentragfähigkeit um den Faktor

\[
1 \leq 1 + \left[\frac{b}{b_{eff}} \cdot 1 \right] \cdot \alpha_y^k < \frac{b}{b_{eff}}
\]

mit der dimensionslosen Querkraftneigung

\[
\alpha_y = \frac{V_{Edy}}{V_{Edz}} \cdot \frac{h}{b} \leq 1 \text{ sowie } k = 1/2 \text{ und } b_{eff} = 0.6 \cdot b
\]

Aus Kompatibilitätsgründen (zur einachsigen Querkraftbemessung) ergibt sich die wirksame Querschnittsbreite zu

\[
b_w = b \cdot \left[1 + \left(\min(1,h/b) \cdot \alpha_y^b \right) \right] \leq b
\]

Je schiefwinkliger die Querkraft wirkt, desto so mehr Bewehrung ergibt sich gegenüber der "Komponentenmethode". Untersuchungen haben gezeigt, dass die nach der "Komponentenmethode" ermittelte Bewehrung ggf. zu gering ist, da das zweiachsige Tragverhalten des Querschnitts nicht erfasst wird.

6.2.3 **Mindestquerkraftbewehrung**

DIN 1045 13.2.3(5), DIN Fb 102

Bei überwiegend auf Biegung beanspruchten Bauteilen ist eine Mindestquerkraftbewehrung in Höhe von

\[
\min \rho_w = \rho = 0.16 \cdot f_{ctm} / f_{yk} \geq \rho_w = \frac{a_{sw} b_{sw}}{w \cdot \sin \alpha}
\]

nach Tab. 29 vorzusehen.

ÖN B 4700

Gemäß 3.4.9.4(2) muss die geforderte Bügelbewehrung mindestens dem nachstehend angegebenen Bewehrungsquerschnitt entsprechen

\[
a_{sw,\text{min}} = \frac{A_{sw}}{s} \geq \frac{15 \cdot f_{ctm}}{f_{yd}^\alpha} \cdot b_w
\]

EC 2

Nach 9.2.2(5) darf die Mindestquerkraftbewehrung für Balken einem nationalen Anhang entnommen werden. Voreingestellt ist \(\rho_{w,\text{min}} = 0.08 \cdot \frac{f_{ck}}{f_{yk}} \).

Platten und Faltwerke bilden als Flächenträger mit b/h > 5 ebenso wie Stützen und Wände als Druckglieder mit e_y/h ≤ 3.5 eine Ausnahme. Eine Mindestquerkraftbewehrung ist nicht erforderlich.

6.2.4 **Anschluss der Gurte an den Balkensteg**

DIN 1045-1, 10.3.5 / EC 2, 6.2.4 / ÖN B 4700, 3.4.4.3

Bei Plattenbalken und Doppel-T-Querschnitten ist n. DIN 1045-1, Abs. 10.3.5, der Anschluss der Gurte an den Balkensteg nachzuweisen. Dazu ist der Bemessungswert der einwirkenden Längsschubkraft zu ermitteln aus
Bei Anschluss eines Druckgurtes:

\[
\Delta F_d = \Delta F_{cd} = \frac{\Delta M_{Ed}}{z} \cdot \frac{A_{ca}}{A_{cc}} \cdot \frac{M_{Ed}}{x} \cdot \frac{b_a}{b_{eff}} \quad \text{mit}
\]

\[
\Delta M_{Ed} = M_{Ed} (x = a_v) - M_{Ed} (x = 0)
\]

\[
z \quad \text{Hebelarm der inneren Kräfte}
\]

\[
A_{ca} \quad \text{Fläche eines abliegenden Druckflansches}
\]

\[
A_{cc} \quad \text{Gesamtfläche der Druckzone}
\]

\[
b_a \quad \text{Breite eines abliegenden Druckflansches}
\]

\[
b_{eff} \quad \text{mitwirkende Breite}
\]

Bei Anschluss eines Zuggurtes:

\[
\Delta F_d = \Delta F_{sd} = \frac{\Delta M_{Ed}}{z} \cdot \frac{A_{sa}}{A_s} \quad \text{mit}
\]

\[
\Delta M_{Ed} = M_{Ed} (x = 0) - M_{Ed} (x = a_v)
\]

\[
A_{sa} \quad \text{Fläche der in einen Flansch ausgelagerten Zugbewehrung}
\]

\[
A_s \quad \text{Gesamtfläche der Zugbewehrung}
\]

Die Wahl der maßgebenden Länge \(a_v \), innerhalb der die Längsschubkraft als konstant angenommen werden darf, sollte nicht größer sein als der halbe Abstand zwischen Momentennullpunkt und Momentenhöchstwert bzw. nennenswertem Querkraftsprung.

Für diese Bemessungsquerkraft erfolgt der Nachweis der Druckstrebenfestigkeit (s. auch Abs. 6.2, S. 28) mit

\[
V_{Rd_{max}} = f_{cd} \cdot f_{cd} \cdot h_r \cdot a_v \quad \text{mit} \quad h_r \quad \text{Dicke des Gurtes am Anschluss.}
\]

Die Anschlussbewehrung ergibt sich zu

\[
a_{ad} = \frac{\Delta F_d}{f_{yd} \cdot a_v} \cdot \frac{1}{\cot \Theta}
\]

Vereinfachend wird für die Neigung der Druckstreben beim Anschluss eines Druckgurtes \(\Theta = 40° \) (\(\cot \Theta = 1.2 \)) und beim Anschluss eines Zuggurtes \(\Theta = 45° \) (\(\cot \Theta = 1.0 \)) angesetzt.

6.2.5 Schubkraftübertragung in Fugen

Einachsig gespannte Bauteile (Querschnitte unter einachsiger Biegung und Querkraft, nicht Kreis(ring)) und Platten (Elementdecken) können als Verbundbauteile von Fertigteilen mit Ortbetonergänzung oder als zwei nacheinander betonierte Ortbetonabschnitte ausgeführt werden.

DIN 1045-1 (7.01), 10.3.6 Der Bemessungswert der in der Kontaktfläche zwischen Ortbeton und Fertigteil oder in nachträglich ergänzten Querschnitten zu übertragenden Schubkraft je Längeneinheit wird ermittelt zu
Die Bemessungswerte der aufnehmbaren Schubkraft in Fugen werden ermittelt zu

\[\nu_{\text{Edj}} = \beta_1 \cdot \frac{V_{\text{Ed}}}{Z_j} \quad \text{mit} \quad \beta_1 = \frac{F_{\text{cdj}}}{F_{\text{cd}}} \]

mit

- \(F_{\text{cdj}} \): Bemessungswert des über die Fuge zu übertragenden Längskraftanteils,
- (Fuge in der Zugzone: \(F_{\text{cdj}} = F_{\text{cd}} \))

\[F_{\text{cd}} = \frac{M_{\text{Ed}}}{Z} \]

Bemessungswert der Gurtlängskraft infolge Biegung

- \(z_j \): innerer Hebelarm in der Fuge. Bei reiner Verbundbewehrung kann n. 10.3.4(2) \(z_j = 0.9 \cdot d \) angenommen werden.

Ohne Anordnung einer Verbundbewehrung darf \(\nu_{\text{Edj}} \) den folgenden Bemessungswert der aufnehmbaren Schubkraft in Fugen von Verbundbauteilen nicht überschreiten:

\[\nu_{\text{Rd,ct}} = \left(0.042 \cdot \eta_1 \cdot \beta_{\text{cd}} \cdot \frac{f_{\text{ck}}^{1/3}}{\mu} \cdot \sigma_{\text{Nd}} \right) \cdot b_j \quad \text{mit} \]

\[\beta_{\text{cd}}, \mu \quad \text{s. Tab. 13 und Abs. (4), DIN 1045-1, 10.3.6} \]

\[\sigma_{\text{Nd}} = \frac{n_{\text{Ed}}}{b_j} \geq -0.6 \cdot f_{\text{cd}} \quad \text{Normalspannung senkrecht zur Fuge, i. A. gilt } \sigma_{\text{Nd}} = 0. \]

\[b_j \]: Breite der Kontaktfläche, i. A. \(b_j = \text{Steg- bzw. Querschnittsbreite} \)

In bewehrten Fugen von Verbundbauteilen beträgt der Bemessungswert der aufnehmbaren Schubkraft:

\[\nu_{\text{Rd,sy}} = a_{sj} \cdot f_{\text{yd}} \cdot \left(\cot \Theta_j + \cot \alpha \right) \cdot \sin \alpha - \mu \cdot \sigma_{\text{Nd}} \cdot b_j \quad \text{mit} \]

\[a_{sj} \]: Querschnitt der die Fuge kreuzenden Bewehrung je Längeneinheit

\[\Theta_j \]: Druckstrebenwinkel mit

\[
1.0 \leq \cot \Theta_j \leq \frac{1.2 \cdot \mu \cdot 1.4 \cdot \sigma_{\text{cd}}}{f_{\text{cd}}} \cdot b_j
\]

\(\nu_{\text{Rd,ct}} = 0.042 \cdot \eta_1 \cdot \beta_{\text{cd}} \cdot f_{\text{ck}}^{1/3} \cdot b_j \) (\(\nu_{\text{Rd,ct}} \) ohne Reibungsanteil)

\[\sigma_{\text{cd}} \]: Normalspannung parallel zur Fuge: \(\sigma_{\text{cd,Fuge}} = 0 \)

\[\alpha \]: Winkel der Verbundbewehrung, i.A. \(\alpha = 90^\circ \)

DIN 1045-1 (8.08), 10.3.6 Der Bemessungswert der in der Kontaktfläche zwischen Ortbeton und Fertigteil oder in nachträglich ergänzten Querschnitten zu übertragenden Schubkraft je Längeneinheit wird ermittelt zu

\[\nu_{\text{Edj}} = \beta_1 \cdot \frac{V_{\text{Ed}}}{Z_j} \quad \text{mit} \quad \beta_1 = \frac{F_{\text{cdj}}}{F_{\text{cd}}} \]

mit

- \(F_{\text{cdj}} \): Bemessungswert des über die Fuge zu übertragenden Längskraftanteils,
- (Fuge in der Zugzone: \(F_{\text{cdj}} = F_{\text{cd}} \))

\[F_{\text{cd}} = \frac{M_{\text{Ed}}}{Z} \]

Bemessungswert der Gurtlängskraft infolge Biegung

- \(z_j \): innerer Hebelarm in der Fuge. Bei reiner Verbundbewehrung kann n. 10.3.4(2) \(z_j = 0.9 \cdot d \) angenommen werden.

Der Bemessungswert der aufnehmbaren Schubkraft in Fugen wird ermittelt zu

\[\nu_{\text{Rdj}} = \left(\eta_1 \cdot C_j \cdot f_{\text{cd}} - \mu \cdot \sigma_{\text{Nd}} \right) \cdot b_j + \nu_{\text{Rdj,asy}} \leq \nu_{\text{Rdj,max}} \]
mit dem Bemessungswert der aufnehmbaren Schubkraft.

\[v_{Rd,sys} = a_{sj} \cdot f_{yd} \cdot (1.2 \cdot \mu \cdot \sin \alpha + \cos \alpha). \]

Dabei ist

- \(a_{sj} \): Querschnitt der die Fuge kreuzenden Bewehrung je Längeneinheit
- \(c_{j,\mu} \): s. Tab. 13 DIN 1045-1, 10.3.6
- \(f_{cd} \): Bemessungswert der Betondruckfestigkeit (bezogen auf \(\gamma_{c,\text{unbewehrt}} \))
- \(\sigma_{Nd} = n_{Ed} / b_{j} \geq -0.6 \cdot f_{cd} \): Normalspannung senkrecht zur Fuge, \(\sigma_{Nd} \leq 0 \)
- \(\alpha \): Winkel der Verbundbewehrung mit \(45^\circ \leq \alpha \leq 90^\circ \), i.A. \(\alpha = 90^\circ \)
- \(b_{j} \): Breite der Kontaktfläche, i.A. \(b_{j} = \) Steg- bzw. Querschnittsbreite

Wenn \(\sigma_{Nd} \) eine Zugspannung ist, ist bei glatten und rauen Fugen \(c_{j} = 0 \) zu setzen.

Wenn die Fuge unter dynamischer Belastung steht, ist \(c_{j} = 0 \) zu setzen.

Die maximal aufnehmbare Schubkraft beträgt:

\[v_{Rd,\text{max}} = 0.5 \cdot \eta_{1} \cdot \nu \cdot f_{cd} \cdot b_{j} \] mit

- \(\nu \): Abminderungsbeiwert für die Betondruckfestigkeit nach 10.3.6(4).

EC 2, 6.2.5

Der Bemessungswert der in der Kontaktfläche zwischen Ortbeton und Fertigteil oder in nachträchtig ergänzten Querschnitten zu übertragenden Schubkraft je Längeneinheit wird ermittelt zu

\[v_{Edj} = \beta_{1} \cdot \frac{V_{Ed}}{z_{j}} \] mit \(\beta_{1} = \frac{F_{cdj}}{F_{cd}} \) mit

- \(F_{cdj} \): Bemessungswert des über die Fuge zu übertragenden Längskraftanteils,
- \(F_{cd} \): Bemessungswert der Gurllängskraft infolge Biegung
- \(z_{j} \): innerer Hebelarm in der Fuge. Bei reiner Verbundbewehrung kann n. 6.2.3 (1) \(z_{j} = 0.9 \cdot d \) angenommen werden.

Der Bemessungswert des Schubkraftwiderstands in der Fuge ist gegeben durch (Druckstrebreninkel \(\theta = 45^\circ \))

\[v_{Rd} = (c \cdot f_{cd} - \mu \cdot \sigma_{n} + \rho \cdot f_{yd} \cdot (\mu \cdot \sin \alpha + \cos \alpha)) \cdot b_{j} \leq v_{Rd,\text{max}} \] mit

- \(c,\mu \): s. Absatz (2)
- \(\sigma_{Nd} = n_{Ed} / b_{j} \geq -0.6 \cdot f_{cd} \): Normalspannung senkrecht zur Fuge, \(\sigma_{Nd} \leq 0 \)
- \(\rho = a_{sj} / a_{i} \) mit \(a_{i} \): Fläche der Fuge
- \(b_{j} \): Breite der Kontaktfläche, i.A. \(b_{j} = \) Steg- bzw. Querschnittsbreite
- \(\alpha \): Winkel der Verbundbewehrung mit \(45^\circ \leq \alpha \leq 90^\circ \), i.A. \(\alpha = 90^\circ \)

Wenn \(\sigma_{Nd} \) eine Zugspannung ist, ist \(c = 0 \) zu setzen.

Wenn die Fuge unter dynamischer Belastung steht, ist \(c \) zu halbieren.

ÖN B 4700, 3.4.4.5 Der Bemessungswert der in der Kontaktfläche zwischen Ortbeton und Fertigteil oder in nachträglich ergänzten Querschnitten zu übertragenden Schubkraft je Längeneinheit wird ermittelt zu

\[v_{Ed} = \beta_{1} \cdot \frac{V_{Ed}}{b_{j} \cdot z_{j}} \] mit \(\beta_{1} = \frac{F_{cdj}}{F_{cd}} \) mit

- \(F_{cd} \): Bemessungswert des über die Fuge zu übertragenden Längskraftanteils (Fuge in der Zugzone: \(F_{cdj} = F_{cd} \))

36

Stahlbetontheorie
Beim HDW-gestrahlten oder verzahnten Oberflächen darf nach 3.4.4.5(7) auf eine kreuzende Bewehrung verzichtet werden, wenn gilt:

\[r_{Ed} \leq r_{Rd,ct} \] mit \[r_{Rd,ct} = 2.0 \cdot r_d + \mu \cdot \sigma_n \]

\[r_d \] Rechenwert der Schubspannung (Tab. 4, Abschn. 3.4.1.1(3))
\[\mu \] Reibungsbeiwert (Tab. 6, Abschn. 3.4.4.5(3))
\[\sigma_n \] Normalspannung in der Fuge

Der Bemessungswert der widerstehenden Schubspannung wird berechnet zu

\[\tau_{Rd,sy} = \kappa_1 \cdot \tau_d \cdot \rho_1 \cdot \kappa_2 \cdot f_{yd} \cdot \left(\mu \cdot \sin \alpha \cdot \cos \alpha \right) + \mu \cdot \sigma_n + \rho_1 \cdot \kappa_3 \cdot \sqrt{f_{yd} \cdot f_{cd} \cdot \sin \alpha \cdot \Theta \cdot \mu \cdot f_{cd}} \]

\[\kappa_1, \kappa_2, \kappa_3, \beta \] aus Tab. 6, Abschn. 3.4.4.5(3)
\[\rho_1 \] Bewehrungsgrad: \[\rho_1 = \frac{A_s}{A_{Fuge}} \]
\[\alpha \] Winkel zwischen Fuge und Bewehrung (hier: immer 90°)

6.2.6 Torsionsbemessung

Bei der Bemessung für Torsion ist bei Vollquerschnitten i. d. R. nur die St. Venant’sche Torsion zu betrachten. Die Torsionstragfähigkeit kann unter Annahme eines dünnwandigen, geschlossenen Querschnitts mit der Ersatzwanddicke \[t_{eff} = 2 \cdot d_i \leq b_w/4 \] nachgewiesen werden (auch DIN Fb 102).

ÖN B 4700

\[t_{eff} = d_i/6 < b_w/4 \]

mit \(d_i \) als Durchmesser des größten, dem tatsächlichen Querschnitt einzu- beschreibenden Kreises.

EC 2

\[t_{eff} = A_c/u_c < b_w/4 \]

mit \(A_c \) = Gesamtfläche und \(u_c \) = äußerer Umfang des Querschnittes.

6.2.6.1 Prüfung auf erforderlichen Nachweis

Zunächst ist zu überprüfen, ob Torsionsbewehrung erforderlich ist (nicht DIN-Fb 102 und ÖN B 4700). Dies geschieht n. Abschn. 10.4.1(6) für einen näherungsweise rechteckigen Vollquerschnitt mit

\[T_{Ed} \leq \left(V_{Ed} \cdot b_w \right)/4.5 \]

und

\[V_{Ed} \cdot \left(1 + (4.5 \cdot T_{Ed})/(V_{Ed} \cdot b_w)\right) \leq V_{Rd,ct} \]

Bei näherungsweise rechteckigen Vollquerschnitten ist nur die Mindestbewehrung erforderlich, wenn gilt:

\[T_{Ed}/T_{Rd,c} + V_{Ed}/V_{Rd,ct} \leq 1.0 \]

mit

\[T_{Rd,c} = \tau_t \cdot t_{eff} \]
\[\tau_t = f_{cd}, f_{cd} = \alpha_{ct} \cdot f_{ck,0.05}/\gamma_c \]
\[\alpha_{ct} \] darf einem Nationalen Anhang entnommen werden. Voreingestellt ist \(\alpha_{ct} = 1.0 \).

6.2.6.2 Berechnung des Bemessungswertes des aufnehmbaren Torsionsmomentes:

Kann der Nachweis nicht erbracht werden, ist mit 10.4.2 (3) die Bewehrung zu ermitteln, so dass \(T_{Ed} \leq T_{Rd,sy} \) gilt.

Der Bemessungswert des aufnehmbaren Torsionsmoments \(T_{Rd,sy} \) ist dabei abhängig von der Neigung der Druckstreben \(\cot \Theta \), die für die Schubkraft in der Wand infolge Querkraft und Torsion (nicht ÖN B 4700 und EC 2).

Schubbemessung 37
zu ermitteln ist. Die Neigung der Druckstreben \(\cot \Theta \) ist für den Querkraftnachweis gleichermaßen anzuwenden.

\[
T_{Rd,sy} = a_{s,T} \cdot f_{yd} \cdot 2 \cdot A_k \cdot \cot \Theta \quad \text{bzw.} \quad T_{Rd,ty} = A_{s,T} / u_k \cdot f_{yd} \cdot 2 \cdot A_k \cdot \tan \Theta
\]

mit

- \(A_k \): Kernquerschnitt, durch die Mittellinien der Querschnittswände eingeschlossene Fläche
- \(u_k \): Umfang der Fläche \(A_k \)

6.2.6.3 Berechnung des maximal aufnehmbaren Torsionsmomentes

Allerdings darf der Bemessungswert des einwirkenden Torsionsmomentes in keinem Querschnitt des Bauteils den Wert \(T_{Rd,max} \) überschreiten (10.4.2 (4)).

\[
T_{Rd,max} = \frac{\alpha_{c,red} \cdot f_{cd} \cdot 2 \cdot A_k \cdot t_{eff}}{\cot \Theta + \tan \Theta} \quad \text{mit} \quad \alpha_{c,red} = 0.7 \cdot \alpha_c \quad \text{(nicht ÖN B 4700 und EC 2)}.
\]

Es kann analog \(V_{Rd,max} \) (s. Abs. 6.2.1.5, S. 31) eine Erhöhung von \(\Theta \) erfolgen, wenn \(T_{Rd,max} < T_{Ed} \) ist bis gilt \(T_{Ed} = T_{Rd,max} \).

6.2.7 Bemessung für Querkraft und Torsion

Die maximale Tragfähigkeit bei kombinierter Beanspruchung aus Querkraft und Torsion wird durch die Druckstrebentragfähigkeit begrenzt mit

\[
\begin{aligned}
\left(\frac{T_{Ed}}{T_{Rd,max}} \right)^2 + \left(\frac{V_{Ed}}{V_{Rd,max}} \right)^2 & \leq 1 \quad \text{(Kompaktquerschnitte)}
\end{aligned}
\]

EC 2, ÖN B 4700

\[
\begin{aligned}
\left(\frac{T_{Ed}}{T_{Rd,max}} \right)^2 + \left(\frac{V_{Ed}}{V_{Rd,max}} \right)^2 & \leq 1 \quad \text{(Vollquerschnitte)}
\end{aligned}
\]

6.2.8 Hauptdruckspannungsnachweis

Wände oder ähnliche hauptsächlich über Normalkraft abtragende Bauteile sind bezüglich ihrer Hauptdruckspannung zu überprüfen. N. 10.6.2(2) ist der Bemessungswert der Druckstrebenfestigkeit unter zweiachsigem Druck begrenzt durch

\[
\sigma_{Rd,max} = f_{ak} \cdot \eta_1 \cdot f_{cd} \quad \text{mit} \quad \sigma^1_2 \text{ maximale Hauptdruckspannung}
\]

ÖN B 4700

\[
\sigma^1_2 \leq 1.1 \cdot \eta_1 \cdot f_{cd}
\]
Rissnachweis

Das Ziel beim Entwurf von Stahlbetonbauteilen ist die Begrenzung der entstehenden Rissbreiten auf ein Maß, das die ordnungsgemäße Funktion und Dauerhaftigkeit eines Bauwerks gewährleistet.

Wird ein Stahlbetonstab einer Zugbelastung ausgesetzt, so ergibt sich (idealisiert) folgendes Last-Verformungs-Diagramm:

Zunächst ist der Querschnitt ungerissen (Zustand 1) bis es bei \(\varepsilon_{sm1} \) unter \(S_1 \) zum ersten Riss kommt. I.d.R. hat der Bewehrungsgrad hier keinen nennenswerten Einfluss auf die Steifigkeit des Trägers. Danach nimmt die Rissanzahl bei weiterer Lastzunahme stark zu bis bei \(\varepsilon_{sm,II} \) unter \(S_{II} \) die Erstrisbildung abgeschlossen ist. Die Steifigkeit des Bauteils nimmt mit zunehmender Belastung ständig ab und nähert sich der Steifigkeit des reinen Zustands 2 an.

Ab jetzt ändert sich die Rissanzahl wenig bis bei \(\varepsilon_{sm,II} \) unter \(S_{II} \) entweder die Rissbildung abgeschlossen ist oder der Träger versagt. Die Abnahme der Steifigkeit resultiert vor allem aus der lokalen Schädigung des Verbundes.

In den pcae-Programmen werden - je nach Ausbaustufe - folgende Nachweisverfahren angeboten:
- DIN (ohne direkte Berechnung der Rissbreite)
- DIN (Berechnung der Rissbreite, nicht DIN 1045, ÖN B 4700)
- P. Schießl
- P. Noakowski

In Abhängigkeit der nachfolgend beschriebenen Parameter wird zunächst der minimale Bewehrungsgrad in der Zugzone bestimmt. Anschließend wird überprüft, ob die erforderlichen Grenzdurchmesser oben und unten für die maßgebende Risslast eingehalten werden. Ist der Nachweis nicht erfüllt, werden die Bewehrungsquerschnitte entsprechend erhöht.

Beim Nachweis der zulässigen Rissbreite für Plattenbalken- und Doppel-T-Querschnitten wird die Einflussbreite der Bewehrung auf Stegbreite zzgl. 3-fachem Stahlrandabstand begrenzt.
Folgende Parameter sind festzulegen:

- der maximale Stabdurchmesser der Bewehrung $d_{s,gr}$
- die rechnerische Rissbreite w_{cal} (DIN 1045: über die Umweltbedingung n. Tab. 10)
- das Verbundverhalten zwischen Bewehrung und Beton (nur Schießl und Noakowski)
- das maßgebende Betonalter durch den Faktor $k_{z,t}$ für normal erhärtende Zemente, übliche Bauteilabmessungen und unter Normaltemperatur der Luft. Die unteren Klammerausdrücke gelten für schnell erhärtende Zemente, sehr hohe Umgebungstemperaturen und/oder massige Bauteile; die oberen für langsam erhärtende Zemente und/oder niedrige Umgebungstemperaturen während des Erhärtnens.
- die Art der Zwangsbeanspruchung (nur bei aktivierter Mindestbewehrung)
- die Drucknormalkraft N_c im Schwerpunkt des Betonquerschnitts (nicht DIN 1045, nur bei aktivierter Mindestbewehrung und Biegezwang)

Der $k_{z,t}$-Wert bezieht sich auf den Betrachtungszeitpunkt der Nachweisführung. Sollen beide Teilnachweise (Mindestbewehrung zum Zeitpunkt der Erstrissbildung und Begrenzung der Rissbreite nach abgeschlossener Rissbildung) geführt werden, wird der vorgegebene $k_{z,t}$-Wert nur bei der Erstrissbildung berücksichtigt.

7.1 Rissnachweis DIN 1045, 17.6

Der Rissbreitennachweis gliedert sich in zwei Teile:

In oberflächennahen Bereichen von Stahlbetonbauteilen, in denen Betonzugspannungen aus innerem Zwang entstehen können, ist i. A. eine Mindestbewehrung einzulegen. Wird diese nicht durch die Biegebewehrung abgedeckt, ist der Bewehrungsgrad entsprechend zu erhöhen.

Die Rissbreiten infolge einer Lastbeanspruchung richten sich nach Regeln für die statisch erforderliche Bewehrung und sind vor allem von der vorhandenen Spannung in der Bewehrung und von deren Anordnung im Querschnitt abhängig. Deshalb sind die Stababstände bzw. die Stabdurchmesser der gewählten Bewehrung in Abhängigkeit der Spannung zu begrenzen. Es erfolgt der Nachweis zur Einhaltung der Stabdurchmesser. Werden sie durch die Biegebewehrung nicht eingehalten, ist der Bewehrungsgrad entsprechend zu erhöhen.

7.1.1 Mindestbewehrung (17.6.2)

$$\mu_z = k_0 \cdot \beta_{bZ} / \sigma_s$$ mit

- μ_z auf die Zugzone nach Zustand 1 bezogener Bewehrungsgehalt
- k_0 Zwangsbewehrung (Biegezwang 0.4, Zugzwang 1.0)
- β_{bZ} wirksame Betonzugfestigkeit ($\beta_{bZ} = 0.25 \cdot \beta_{WN}^{2/3}$)
- β_{WN} Nennfestigkeit des Betons ($\beta_{WN} \geq 35 \text{ N/mm}^2$)
- σ_s Spannung in der Bewehrung n. Tab. 14 ($\sigma_s \leq 0.8 \cdot \beta_e$)

Bei Zwang im frühen Betonalter ($k_{z,t} \approx 0.5$) darf mit der dann vorhandenen geringeren wirksamen Betonzugfestigkeit gerechnet werden ($\beta_{bZW} = k_{z,t} \cdot \beta_{bZ}$). Dann ist jedoch der Grenzdurchmesser (s.o.) im Verhältnis $\beta_{bZW} / 2.1$ zu verringern.
7.1.2 Regeln für die statisch erforderliche Bewehrung (17.6.3)

\[
\sigma_s \leq \lim d_s(\sigma_s) \quad \text{mit}
\]

- \(d_{s,gr}\): Grenzdurchmesser der Bewehrung
- \(d_s\): Spannung in der Bewehrung aus häufigen Lasten
- \(\lim d_s\): zulässiger Bewehrungsdurchmesser n. Tab. 14

Die Spannungen werden mit dem Parabel-Rechteck-Diagramm für Beton und der bilinearen Spannungsdehnungslinie für die Bewehrung ermittelt (s. Abs. 1, S. 9).

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betonstarke Spannung (\sigma_s) in N/mm²</td>
<td>180</td>
<td>200</td>
<td>240</td>
<td>280</td>
<td>320</td>
<td>400</td>
</tr>
<tr>
<td>Grenzdurchmesser in mm bei Umweltbedingungen nach Tab. 10</td>
<td>Zeile 1</td>
<td>36</td>
<td>36</td>
<td>28</td>
<td>25</td>
<td>15</td>
</tr>
<tr>
<td>Zeilen 2-6</td>
<td>28</td>
<td>20</td>
<td>16</td>
<td>12</td>
<td>8</td>
<td>5</td>
</tr>
</tbody>
</table>

Die Grenzdurchmesser dürfen im Verhältnis \(d_{s,gr} / d_{s,gr}^0\) vergrößert werden.

\[d_{s,gr}^0\] ist der zulässige Durchmesser.

Bei Verwendung von Steckbändern mit \(d_{s,gr}^0\) müssen die konstruktiven Risse nicht berücksichtigt werden.

Tab. 14: Grenzdurchmesser \(d_{s,gr}\) in mm

7.2 Rissnachweis DIN 1045-1, 11.2 / DIN-Fb 102, 4.4.2 / EC 2, 7.3

Beim Rissbreitennachweis ist zwischen dem Zustand der Bildung von Einzelrissen und dem Zustand mit abgeschlossenem Rissbild zu unterscheiden.
Zur Aufnahme von Zwangseinwirkungen und Eigenspannungen ist eine Mindestbewehrung anzubringen, die unter Berücksichtigung der Anforderungen an die Rissbreitenbegrenzung für die Schnittgrößenkombination zu bemessen ist, die im Bauteil zur Erstrissbildung führt.

Die Rissbreiten infolge einer Lastbeanspruchung sind vor allem von der vorhandenen Spannung in der Bewehrung und von deren Anordnung im Querschnitt abhängig. Deshalb sind die Stabdurchmesser oder die Stababstände der gewählten Bewehrung in Abhängigkeit der Spannung zu begrenzen. Es erfolgt der Nachweis zur Einhaltung der Stabdurchmesser (der Nachweis zur Einhaltung der Stababstände liegt auf der unsicheren Seite, s. Heft 525, DAFStb).

7.2.1 Mindestbewehrung ohne direkte Berechnung (DIN 1045-1, 11.2.2)

Berechnung der auf die Zugzone nach Zustand 1 bezogenen Bewehrung in cm²

\[A_s = k_c \cdot k_1 \cdot f_{ct,eff} \cdot A_{ct} / \sigma_s \]

mit

\[k_c = 0.4 \cdot \left(1 + \frac{\sigma_s}{k_1 \cdot f_{ct,eff}} \right) \leq 1 \]

Beiwert zur Berücksichtigung der Spannungsverteilung (Zugzwang: \(k_c = 1.0 \), Biegezwang \(k_c \geq 0.4 \))

\[\sigma_s \]

Betonspannung im Schwerpunkt (Erstrissbildung, \(\sigma_s < 0 \) bei Druck)

\[k_1 = 1.5 \cdot h / h' \] für Drucknormalkraft; \(k_1 = 2 / 3 \) für Zugnormalkraft

\[h' = \min(h, 1m) \]

Beiwert zur Berücksichtigung nichtlinear verteilter Betonzugspannungen

infolge selbst hervorgerufenem Zwang (z.B. Hydratationswärme)

\[k = 0.8 \] für \(h \leq 300 \) mm

\[k = 0.5 \] für \(h > 800 \) mm

Für \(h \) ist der kleinere Wert aus Höhe und Breite des Querschnitts anzusetzen. Zwischenwerte werden interpoliert.

... infolge außerhalb des Querschnitts hervorgerufenem Zwang (z.B. Stützensenkung)

\[k = 1.0 \]

EC 2

\[k = 1.0 \] für \(h \leq 300 \) mm für Stege und Gurte

\[k = 0.65 \] für \(h > 800 \) mm für Stege und Gurte

\[f_{ct,eff} = k_{zt} \cdot f_{ctn} \] wirksame Zugfestigkeit des Betons

\[A_{ct} \]

Fläche der Betonzugzone nach Zustand 1 (Erstrissbildung)

\[\sigma_s \]

Spannung in der Bewehrung n. Tab. 20 in Abhängigkeit von \(d_s^* \) und \(w_k \)

Es wird die Formel

DIN 1045-1 / DIN-Fb 102

\[d_s' = 6 \cdot w_k \cdot E_0 \cdot f_{ct0} / \sigma_s^2 \]

mit \(f_{ct0} = 3 \) N/mm² s. Heft 525, DafStb

EC 2

\[d_s' = 1 / \left(k_1 \cdot k_2 \cdot k_4 \cdot (1 - k_1) \right) \cdot w_k \cdot E_0 \cdot f_{ct0} / \sigma_s^2 \]

mit

\[k_1 = 0.8, \ k_2 = 0.5, \ k_4 = 0.776, \ k_1 = 0.4, \ f_{ct0} = 2.9 \] N/mm²

analog DIN 1045-1 ausgewertet.

Berechnung des Grenzdurchmessers der Bewehrung

\[d_{s,gr} = d_{s}^* \cdot \frac{k_c \cdot k_1 \cdot h_1 \cdot f_{ct,eff} \cdot f_{ct0}}{4 \cdot (h - d) \cdot f_{ct0}} \geq d_{s}^* \cdot \frac{f_{ct,eff}}{f_{ct0}} \]

mit

\[d_{s}^* \]

Grenzdurchmesser n. Tab. 20

\[h_1 \]

Höhe der Zugzone

\[f_{ct0} = 3.0 \] N/mm² Bezugs-Zugfestigkeit des Betons
7.2.2 Mindestbewehrung bei dickeren Bauteilen (nur DIN 1045-1 (8.08), 11.2.2(8))

Es kann günstiger sein, bei zentrischem Zwang stattdessen folgende Bewehrung einzulegen:

\[A_b = f_{ct,eff} \cdot A_{c,eff} \]
\[\geq k \cdot f_{ct,eff} \cdot A_{ct} / f_{yk} \]

bei \(d_{b,gr} = d_s^* \cdot f_{ct,eff} \)

mit \(f_{ct,eff} = h_{eff} \cdot b \) Wirkungsbereich der Bewehrung

mit \(h_{eff} \) nach Bild 53 d): Biegezwang: \(h_{eff} = 2.5 \cdot d_1 \) für \(h/d_1 < 10 \) und \(h_{eff} = 5.0 \cdot d_1 \) für \(h/d_1 > 60 \) bzw. zentr. Zwang: \(h_{eff} = 2.5 \cdot d_1 \) für \(h/d_1 < 5 \) und \(h_{eff} = 5.0 \cdot d_1 \) für \(h/d_1 > 30 \), Zwischenwerte werden interpoliert. EC 2: \(h_{eff} = 2.5 \cdot d_1 \)

7.2.3 Berechnung des Grenzdurchmessers der Bewehrung ohne direkte Berechnung (DIN 1045-1, 11.2.3)

\[d_{s,gr} \leq \lim d_s \left(\sigma_s, d_s^* \right) \]

mit dem zulässigen Bewehrungsdurchmesser (Tab. 20)

\[\lim d_s = d_s^* \cdot \frac{\sigma_s \cdot A_s}{4 \cdot (h - d) \cdot f_{ct,eff}} \]

\(\sigma_s \) Spannung in der Bewehrung im Zustand 2

\(A_s \) vorhandene Bewehrung

\(f_{ct,eff} = k_{zt} \cdot f_{ctm} \) wirksame Zugfestigkeit des Betons

Die Spannungen werden auf Gebrauchslastniveau (\(\gamma_c = \gamma_s = 1.0 \)) mit den gewählten Spannungsdehnungslinien (s. Materialeigenschaften, Abs. 1, S. 9 ff) ermittelt.

7.2.4 Begrenzung der Rissbreite durch direkte Berechnung (DIN 1045-1, 11.2.4)

\[w_k = s_{r,max} \cdot \left(\epsilon_{sm} - \epsilon_{cm} \right) \]

mit DIN 1045-1 / DIN-Fb 102

\[s_{r,max} = \frac{d_s}{3.6 \cdot eff \cdot \rho} \leq \frac{\sigma_s \cdot d_s}{3.6 \cdot f_{ct,eff}} \]

EC 2

\[s_{r,max} = k_3 \cdot c + k_1 \cdot k_2 \cdot d_s \cdot eff / \rho \]

Faktoren \(k_3, k_4 \) s. nationaler Anhang, empfohlen \(k_3 = 3.4 \), \(k_4 = 0.425 \)

c Betondeckung bezogen auf die Längsbewehrung

Faktor \(k_1 \) zur Beschreibung der Verbundeigenschaften der Bewehrung:

gut \(k_1 = 0.8 \), schlecht \(k_1 = 1.6 \)

Faktor \(k_2 = \frac{\epsilon_{c1} + \epsilon_{c2}}{2 \cdot \max (\epsilon_{c1}, \epsilon_{c2})} \geq 0.5 \) zur Berücksichtigung der Dehnungsverteilung

\[\epsilon_{sm} - \epsilon_{cm} = \frac{\sigma_s - \sigma_{cm} \cdot \alpha_e}{E_s} \geq (1 - k_1) \frac{\sigma_s}{E_s} \]

\(\sigma_s \) Spannung der Bewehrung im Zustand 2

\(\sigma_{cm} = k_1 \cdot f_{ct,eff} \left(1 + \frac{1}{\alpha_e \cdot eff / \rho} \right) \)

mittlere Betonzugspannung

\(k_1 \) Faktor, der von der Dauer der Lasteinwirkung abhängt

\(k_1 = 0.6 \) bei kurzzeitiger Lasteinwirkung (nur EC 2)

\(k_1 = 0.4 \) bei langfristiger Lasteinwirkung

\(f_{ct,eff} = k_{zt} \cdot f_{ctm} \) wirksame Zugfestigkeit des Betons

\(\alpha_e = E_s / E_{cm} \)

Verhältnis der Elastizitätsmoduln

\(eff / \rho = A_s / A_{c,eff} \)

effektiver Bewehrungsgrad

\(A_{c,eff} \) Wirkungsbereich der Bewehrung (s.o.) mit der Einschränkung
\[
\begin{align*}
&c_{\text{eff}} \leq \frac{(d-x)}{2} \quad \text{für Platten unter Biegebeanspruchung} \\
&c_{\text{eff}} \leq \frac{d}{2} \quad \text{für Platten unter Zugbeanspruchung}
\end{align*}
\]

Zur Ermittlung der Mindestbewehrung wird die Formel umgestellt und nach \(A_s \) aufgelöst:

DIN 1045-1 / DIN-Fb 102

\[
\min A_s = \sqrt{\frac{A_{\text{eff}} \cdot k_c \cdot k_t \cdot A_{\text{cl}} \cdot d_s}{3.6 \cdot E_s \cdot w_k}}
\]

EC 2

\[
\min A_s = \sqrt{\frac{k_t \cdot A_{\text{eff}} \cdot k_c \cdot k_1 \cdot k_2 \cdot k_4 \cdot A_{\text{cl}} \cdot d_s}{E_s \cdot w_k}}
\]

Diese Variante zur Ermittlung der Mindestbewehrung wird in den pcae-Programmen nicht angeboten.

Die Spannungen werden auf Gebrauchslastniveau (\(\gamma_c = \gamma_s = 1 \)) mit den gewählten Spannungsdehnungslinien ermittelt (s. Abs. 1, S. 9).

<table>
<thead>
<tr>
<th>Stahlspannung (\sigma_{\text{NenF}})</th>
<th>Grenzdurchmesser der Stäbe in mm</th>
<th>in Abhängigkeit vom Rechnenwert der Rissbreite (w_k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(w_k = 0.4 \text{ mm})</td>
<td>(w_k = 0.3 \text{ mm})</td>
<td>(w_k = 0.2 \text{ mm})</td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
<td>36</td>
</tr>
<tr>
<td>3</td>
<td>240</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>200</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>330</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>300</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>400</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>450</td>
<td>7</td>
</tr>
</tbody>
</table>

Tab. 20: Grenzdurchmesser \(d_s^* \) bei Betonstählen in mm (Tabellenwerte ermittelt mit \(d_s^* = 6 \cdot w_k \cdot E_s \cdot f_{ct0} / \sigma_s^2 \))

DIN 1045-1 / DIN-Fb 102

Die mindestens einzuhaltende Rissbreite \(w_k \) ist abhängig von der Expositionsklasse, in der sich das Bauteil befindet (s. Tab. 3, 18 und 19):

<table>
<thead>
<tr>
<th>Zeile</th>
<th>Anforderungs-klasse</th>
<th>...</th>
<th>...</th>
<th>...</th>
<th>...</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>quasi-ständig</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>quasi-ständig</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 18: Anforderungen an die Begrenzung der Rissbreite (Auszug)

<table>
<thead>
<tr>
<th>Zeile</th>
<th>Anforderungs-klasse</th>
<th>...</th>
<th>...</th>
<th>...</th>
<th>...</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Expositionsklasse</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>X01</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>3</td>
<td>X02, X03, X04</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>4</td>
<td>X01, X02, X03, X04, X05, X06, X07</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Tab. 19: Mindestanforderungsklassen in Abhängigkeit von der Expositionsklasse (Auszug)
Wenn der Zeitpunkt der Erstrissbildung nicht mit Sicherheit innerhalb der ersten 28 Tage festgelegt werden kann, sollte mindestens eine effektive Betonzugfestigkeit von 3 N/mm² für Normalbeton und 2.5 N/mm² für Leichtbeton angenommen werden. Im Programm kann eingestellt werden, ob für $k_{28} \geq 1$ min $f_{kt,eff}$ eingehalten werden soll.

Tab. 3: Exposisionsklassen (Auszug)

<table>
<thead>
<tr>
<th>Klasse</th>
<th>Beschreibung der Umgebung</th>
<th>Beispiele für die Zuordnung von Exposisionsklassen</th>
<th>Mindestbetonzugfestigkeitsklasse</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kein Korrosions- oder Angriffsrisiko</td>
<td>Bauteil ohne Bewehrung in nicht betonangreifender Umgebung</td>
<td>C12/15 LC12/13</td>
</tr>
<tr>
<td>2</td>
<td>Bewehrungskorrosion, ausgelöst durch Karbonatisierung</td>
<td>Bauteile in Innenräumen mit normaler Luftfeuchte; Bauteile, die ständig unter Wasser befinden</td>
<td>C16/20 LC16/18</td>
</tr>
<tr>
<td></td>
<td>Wassereinwirkung</td>
<td>Teil von Wasserbehältern; Gründungsbauteile</td>
<td>C16/20 LC16/18</td>
</tr>
<tr>
<td>3</td>
<td>Mäßige Feuchte</td>
<td>Bauteile, zu denen die Außenluft häufiger oder ständig Zugang hat; Innenräume mit hoher Luftfeuchte</td>
<td>C20/25 LC20/22</td>
</tr>
<tr>
<td>4</td>
<td>Wechselnd nass und trocken</td>
<td>Außenbauteile mit direkter Befahrung; Bauteile in Wasserwechselzonen</td>
<td>C25/30 LC25/28</td>
</tr>
<tr>
<td>5</td>
<td>Bewehrungskorrosion, ausgelöst durch Chloride, ausgenommen Meerwasser</td>
<td>Bauteile im Sprühnebelbereich von Verkehrsflächen; Einzelgaragen</td>
<td>C30/37 LC30/33</td>
</tr>
<tr>
<td>6</td>
<td>Nass, selten trocken</td>
<td>Schwimmbäder und Solebäder; Bauteile, die chlorhaltigen Industriewässern ausgesetzt sind</td>
<td>C35/45 LC35/38</td>
</tr>
<tr>
<td>7</td>
<td>Wechselnd nass und trocken</td>
<td>Bauteile im Spritzwasserbereich von taumittelbehandelten Straßen; direkt befahrene Parkdecke</td>
<td>C35/45 LC35/38</td>
</tr>
<tr>
<td>8</td>
<td>Bewehrungskorrosion, ausgelöst durch Chloride aus Meerwasser</td>
<td>Außenbauteile in Küstenähe</td>
<td>C30/37 LC30/33</td>
</tr>
<tr>
<td>9</td>
<td>Unterkühle Luft, kein unmittelbarer Meerwasserkontakt</td>
<td>Bauteile in Hafenanlagen, die ständig unter Wasser liegen</td>
<td>C35/45 LC35/38</td>
</tr>
<tr>
<td>10</td>
<td>Tidebereiche, Spritzwasser- und Sprühnebelbereiche</td>
<td>Kaimauern in Hafenanlagen</td>
<td>C35/45 LC35/38</td>
</tr>
</tbody>
</table>

* Die Feuchteangaben beziehen sich auf den Zustand innerhalb der Betondeckung der Bewehrung. Im Allgemeinen kann angenommen werden, dass die Bedingungen in der Betondeckung den Umgebungsbedingungen des Bauteils entsprechen. Dies braucht nicht der Fall zu sein, wenn sich zwischen dem Beton und seiner Umgebung eine Sperrschicht befindet.
* Ausführung direkt befahrener Parkdecke nur mit zusätzlichem Oberflächenbeschichtungssystem für den Beton.
* Eine Betonzugfestigkeitsklasse niedriger, sofern aufgrund der zusätzlichen zutreffenden Exposisionsklasse XF Luftporenbeton verwendet wird.
7.3 Rissnachweis ÖN B 4700, 4.2

Beim Rissbreitennachweis ist zwischen überwiegender Zwangsbeanspruchung und überwiegender Lastbeanspruchung zu unterscheiden.

Für alle Stahlbetonbauteile, in denen die Rissbildung durch Zwangsbeanspruchungen ausgelöst wird, ist eine rissverteilende Bewehrung vorzusehen und im Regelfall auf die Zugränder (Oberflächen) aufzuteilen.

7.3.1 überwiegende Zwangsbeanspruchung (4.2.2)

Die an einem Zugrand einzulegende Bewehrung in cm² berechnet sich mit

\[
A_s = \frac{\mu_1}{100} \cdot b_t \cdot h_t \quad \text{mit}
\]

\[
\mu_1 = \mu_{tr} \left(d_{sr}, w_k \right) \quad \text{auf die Zugzone } b_t \cdot h_t \text{ bezogener Bewehrungsanteil bei überwiegender Zwangsbeanspruchung (Tab. 8a,b)}
\]

\[
d_{s, gr} = d_{sr} \cdot k \cdot k_1 \cdot k_2 \quad \text{Grenzdurchmesser der Bewehrung}
\]

\[
k = \frac{h_t}{5 \cdot h_t} \geq 1 \quad \text{bei Biegerissen } h_t < h
\]

\[
k = \frac{h_t}{10 \cdot h_t} \geq 1 \quad \text{bei Trennrissen}
\]

\[
h_t = \frac{h - x_s}{1 - N / f_{c,m}} \leq h \quad \text{Höhe der Zugzone im Zustand 1 bei Erreichen der Betonzugfestigkeit. Bei überwiegendem Druck } (h_t \leq h_t) \text{ ist keine Beschränkung des Stabdurchmessers erforderlich.}
\]

\[
k_1 = 30 / f_{ck} \leq 1.0
\]

\[
k_2 \quad \text{Beiwert zur Berücksichtigung nichtlinear verteilter Betonzugspannungen ...}
\]

\[
\ldots \text{infolge selbst hervorgerufenem Zwang (z.B. Hydratationswärme)}
\]

\[
k_2 = 0.8 \quad \text{für } h \leq 300 \text{ mm}
\]

\[
k_2 = 0.6 \quad \text{für } h > 800 \text{ mm}
\]

\[
\ldots \text{zwischenwerte werden geradlinig interpoliert.}
\]

\[
\ldots \text{infolge außerhalb des Querschnitts hervorgerufenem Zwang (z.B. Stützensenkung)}
\]

\[
k_2 = 1.0
\]

7.3.2 überwiegende Lastbeanspruchung (4.2.3)

\[
d_{s, gr} \leq \lim d_s \left(\sigma_{sD}, \gamma_t, w_k \right)
\]

mit dem zulässigen Bewehrungsdurchmesser (Tab. 9, 10)

\[
\lim d_s = d_{sr} \cdot k, \quad k \text{ s.o.}
\]

\[
\sigma_{sD} \quad \text{Spannung in der Bewehrung im Zustand 2}
\]

\[
\rho_t \quad \text{vorhandenen Bewehrungsgrad bei überwiegender Lastbeanspruchung}
\]

Die Spannungen werden auf Gebrauchslastniveau \((\gamma_c = \gamma_s = 1)\) mit den gewählten Spannungsdehnungslinien ermittelt (s. Abs. 1, S. 9).
7.4 Rissnachweis nach P. Schießl

\[w_{k,\text{cal}} = k_4 \left(50 + 0.25 \cdot k_2 \cdot k_3 \cdot \frac{d_s}{\mu_{2w}} \right) \cdot \frac{\sigma_{s}}{E_s} \left(1 - \beta_1 \cdot \beta_2 \cdot \left(\frac{\sigma_{s}}{\sigma_{s}} \right)^2 \right) \]

Streuungsfaktor \(k_4 = 1.7 \)
Faktor \(k_2 \) zur Beschreibung der Verbundeigenschaften: gut \(k_2 = 0.8 \), schlecht \(k_2 = 1.6 \)
Faktor \(k_3 \) zur Berücksichtigung der Spannungsverteilung in der Zugzone:
 - Biegung \(k_3 = 0.5 \), Zug \(k_3 = 1.0 \)

Stabdurchmesser \(d_s \) in mm

\[\mu_{2w} = \frac{A_s}{b \cdot h_w} \quad \text{mit} \quad h_w = k_5 \left(d - h \right) \leq \left(d - h \right)/3 \quad \text{(Biegung)} \]
\[h_w = k_5 \left(d - h \right) \leq d/2 \quad \text{(Zug)} \]

Faktor \(k_5 \) zur Festlegung der Größe der Wirkungszone, \(k_5 = 2.5 \)

\[\beta_1 \cdot \beta_2 \cdot \left(\frac{\sigma_{s}}{\sigma_{s}} \right)^2 \leq 0.6 \]

Faktor \(\beta_1 \) zur Berücksichtigung des Einflusses der Verbundeigenschaften:
 - gut \(\beta_1 = 1.0 \), schlecht \(\beta_1 = 0.5 \)

Faktor \(\beta_2 \) zur Berücksichtigung des Einflusses der Lastdauer, hier nur Dauerlast \(\beta_2 = 0.5 \)

\[\sigma_{s} = 0.2 \cdot \frac{\beta_{Z}}{\mu} \quad \text{(Biegung)} \]
\[\sigma_{s} = \frac{\beta_{Z}}{\mu} \quad \text{(Zug)} \]

\[\beta_{Z} = k_{zt} \cdot k_{E} \cdot 0.3 \cdot \rho_{\text{WN}}^{2/3} \quad \text{mit} \quad k_{E} = 0.8 \quad \text{für} \quad d \leq 30 \text{cm} \]
\[k_{E} = 0.6 \quad \text{für} \quad d \geq 80 \text{cm} \]

Für \(d \) wird der kleinere Wert aus Höhe und Breite des Querschnitts angesetzt. Zwischenwerte werden interpoliert.

7.5 Rissnachweis nach P. Noakowski

\[w_k = \gamma_w \cdot C_E \cdot 3.1 \left(\frac{B}{\beta_{W}} \right)^{1/A} \cdot \frac{\sigma_{s1} \cdot C_E \cdot 0.56 \cdot \sigma_{s1}}{E_s} \]

\[\gamma_w = 1.5 \quad \text{Streubeiwert der Rissbreite} \]
\[C_E = 1.0 \quad \text{wenn} \ \sigma_s = \sigma_{s1} \quad \text{(Erstrisszustand)} \]
\[C_E = 0.75 \quad \text{wenn} \ \sigma_s > \sigma_{s1} \quad \text{(Endrisszustand)} \]

\[\beta_{W} = \beta_{WNg} + 5 \text{MN/m}^2 \]

\[\sigma_{s1} = 0.22 \cdot \frac{\beta_{Z}}{\mu} \quad \text{(Biegung)} \]
\[\sigma_{s1} = 0.50 \cdot \frac{\beta_{Z}}{\mu} \quad \text{(Zug)} \]

\[\beta_{Z} = C_{\beta} \cdot \beta_{W}^{0.66} \cdot \left(0.85 - 0.2 \cdot d \right) \cdot \frac{0.6 + 6 \cdot C_{d} \cdot \eta}{1.0 + 6 \cdot \eta} \quad \text{mit} \]
\[C_{\beta} = 0.46, \quad C_{d} = \frac{2.6 + 24 \cdot d}{1.0 + 4.0 \cdot d}, \quad \eta = \frac{M}{N \cdot d} \]

Exponenten \(A, B \) in Abhängigkeit des Verbundbereichs:
 - günstig \(A = 1.12 \), \(B = 0.88 \), ungünstig \(A = 1.02 \), \(B = 0.98 \)

Wenn der Zeitpunkt der Erstrissbildung nicht mit Sicherheit innerhalb der ersten 28 Tage festgelegt werden kann, sollte mindestens die Festigkeit eines B35 angenommen werden. Im Programm kann eingestellt werden, ob für \(k_{zt} \geq 1 \) min \(\beta_{Wz} \) eingehalten werden soll.
7.6 besondere Hinweise bei Kreisquerschnitten

Der Nachweis bereitet bei Kreisquerschnitten unter Biegebeanspruchung Schwierigkeiten, da das Verfahren mit Ausnahme der ÖNorm nur für Rechteckquerschnitte gültig war, bei denen alle Bewehrungsstäbe der Zugzone die gleiche Spannung haben.

Aus diesem Grund ist auch der auf die Zugzone bezogene Bewehrungsgehalt nicht eindeutig.

Zur realistischen Bemessung sind daher für die Verfahren zur 'direkten Berechnung der Rissbreite' folgende Modifikationen implementiert worden (s. hierzu Bergfelder/Dittfach).

Die Stahlspannungen werden bei Biegung über die gemittelten Zug-Stahldehnungen, bei zentrischem Zug über die maximale Stahldehnung ermittelt.

7.6.1 DIN 1045-1, DIN-Fb 102, EC 2, Schießl

\[A_{c,\text{eff}} = 0.5 \cdot k_5 \cdot (1 - \rho) \cdot (5 \rho - 1) \cdot A_c \]

\[\rho = \frac{r_s}{r_b} \]

\[r_s \quad \text{Radius zur Bewehrung} \]

\[r_b \quad \text{Außenradius} \]

\[k_5 = 1 - 2.5 \left[\frac{1 - \rho}{2 \cdot \rho^2 + 2} \right] \leq 1 \]

\[\sigma = \frac{N \cdot r_b}{M} \geq \frac{2}{\rho^2} \]

7.6.2 Schießl, Noakowski

Biegezwang \(\sigma \) wird mit 2.2 multipliziert

Zugzwang \(\sigma \) wird mit 2.0 vervielfacht

Da diese Anpassungen nur bei der 'Berechnung der Rissbreiten' wirken, ergibt sich u.U. bei der tabellenorientierten Nachweisführung (bezogen auf einen Rechteckquerschnitt) zu wenig Bewehrung!

7.7 besondere Hinweise bei Wänden

Bei schubfest mit dem Fundament verbundenen Wänden darf die Mindestbewehrung aus Zwang aufgrund der rissverteilenden Wirkung des Fundaments bis zu einer Wandhöhe von \(h/4 \) oberhalb des Fundaments auf die Hälfte reduziert werden.
Spannungsnachweis

Anmerkungen zum EC 2: Der deutsche Nationale Anhang des Eurocodes wird in den pcae-Programmen derzeit nicht unterstützt. Sämtliche Parameter, die nicht frei eingebbar sind, folgen somit der Empfehlung des Eurocodes.

Der Spannungsnachweis ist in DIN 1045 und ÖN B 4700 nicht geregelt und wird daher auch nicht unterstützt.

Nach Abschn. 11.1.2 sollen die Betondruckspannungen zur Vermeidung von Längsrissen unter der seltenen Einwirkungskombination auf den Wert von zul$_c = 0.6 \cdot f_{ck}$ begrenzt werden. Falls die Gebrauchstauglichkeit, Tragfähigkeit oder Dauerhaftigkeit des Bauwerks durch das Kriechen wesentlich beeinflusst werden, ist unter der quasi-ständigen Einwirkungskombination der Wert von zul$_c = 0.45 \cdot f_{ck}$ einzuhalten.

Die Zugspannungen in der Betonstahlbewehrung sind n. 11.1.3 bei direkten Einwirkungen (Lastbeanspruchung) unter der seltenen Einwirkungskombination auf den Wert von zul$_s = 0.8 \cdot f_{yk}$ zu begrenzen. Bei reiner Zwangsbeanspruchung darf zul$_s = f_{yk}$ gelten.

Die Druck- und Zugspannungen werden auf Gebrauchslastniveau ($\gamma_c = \gamma_s = 1$) mit den gewählten Spannungsdehnungslinien ermittelt (s. Abs. 1, S. 9).

9 Ermüdungs-(Schwing-)nachweis

Anmerkungen zum EC 2: Der deutsche Nationale Anhang des Eurocodes wird in den pcae-Programmen derzeit nicht unterstützt. Sämtliche Parameter, die nicht frei eingebar sind, folgen somit der Empfehlung des Eurocodes.

Der Ermüdungsnachweis ist in der ÖN B 4700 nicht geregelt und wird daher auch nicht unterstützt.

Tragende Bauteile, die einer hohen Anzahl von Lastwechseln unterworfen sind (nicht ruhende Belastung), können infolge Ermüdung versagen, auch wenn die Beanspruchung die für die statischen Nachweise (ruhende Belastung) maßgebenden Materialfestigkeiten nicht erreicht. Für Tragwerke des üblichen Hochbaus braucht i. A. kein Nachweis gegen Ermüdung geführt werden.

9.1 Schwingnachweis DIN 1045, 17.8

Der Schwingnachweis ist nur für den Betonstahl zu führen.

Die Spannungsdifferenz aus Ober- und Unterlast $\Delta \sigma_s = \sigma_{s0} - \sigma_{su}$ darf die eingegebene Schwingbreite $\Delta \sigma_s$ nicht überschreiten.

Die Spannungen werden mit dem Parabel-Rechteck-Diagramm für Beton und der bilinearen Spannungsdehnungslinie für die Bewehrung ermittelt (s. Abs. 1, S. 9).

Der Schwingbreitennachweis wird folgendermaßen durchgeführt: der vorhandene Bewehrungsquerschnitt wird iterativ erhöht bis die zulässige Schwingbreite eingehalten ist. Kann keine Lösung gefunden werden, wird eine Fehlermeldung ausgegeben.

9.2 Ermüdungsnachweis DIN 1045-1, 10.8

Der Ermüdungsnachweis ist i.A. für den Beton und Betonstahl unter Biegung, Längs- und Querkraft zu führen.

In pcae-Programmen werden derzeit - je nach Ausbaustufe - folgende Nachweisverfahren angeboten:

- 10.8.3: Nachweis über schädigungsäquivalente Schwingbreiten (Stufe 2, Grenzzustand der Tragfähigkeit)
- 10.8.4: Vereinfachter Nachweis (Stufe 1, Grenzzustand der Gebrauchstauglichkeit) incl. Nachweis für Querkraft

Bei beiden Verfahren erfolgt der Nachweis zunächst für die Bewehrung (Eingabe der Spannungsschwingbreite $\Delta \sigma$). Dazu wird der vorhandene Bewehrungsquerschnitt solange iterativ erhöht bis für jede Bewehrungsgruppe die zulässige Schwingbreite eingehalten ist.

Anschließend wird überprüft, ob der Beton unter Druckbeanspruchung (Eingabe des Zeitpunkts der Erstbelastung des Betons t_0) trägt. Falls der Nachweis für Beton nicht erfüllt ist, erfolgt keine weitere Bewehrungserhöhung, sondern es wird eine Fehlermeldung ausgegeben.

Dazu sind zwei Schnittgrößenkombinationen der maßgebenden ermüdungswirksamen Einwirkungskombination im Lastigenschaftsblatt vorzugeben. Ist ein Wert (entweder $\Delta \sigma_s$ oder t_0) mit Null eingegeben, wird der Nachweis für diese Materialgruppe nicht geführt.

Die Spannungen werden auf Gebrauchslastniveau ($\gamma_c = \gamma_s = 1$) mit den gewählten Spannungsdehnungslinien ermittelt (s. Abs. 1, S. 9).
9.2.1 Nachweis n. Abschn. 10.8.4 (Stufe 1, GZG)

Der vereinfachte Nachweis ist mit der häufigen Einwirkungskombination im Grenzzustand der Gebrauchstauglichkeit zu führen.

9.2.1.1 Bewehrung

\[\Delta \sigma_s \leq \text{zul} \Delta \sigma_s \quad \text{mit} \quad \text{zul} \Delta \sigma_s = 70 \text{ N/mm}^2 \]

Gilt auch für die Querkraftbewehrung (s. Abs. 6.1.1, S. 26) mit

\[\tan \Theta_{\text{fat}} = \sqrt{\tan \Theta} \quad \text{für} \quad \tan \Theta < 1 \]
\[\tan \Theta_{\text{fat}} = \tan \Theta \quad \text{für} \quad \tan \Theta \geq 1 \]

9.2.1.2 Beton

\[\frac{\sigma_{\text{cd, max}}}{f_{\text{cd, fat}}} \leq 0.5 + 0.45 \cdot \frac{\sigma_{\text{cd, min}}}{f_{\text{cd, fat}}} \leq 0.9 \quad \text{ab C50/60 oder LC50/55} \]
\[\leq 0.8 \quad \text{ab C55/67 oder LC55/60} \quad \text{mit} \]

\[f_{\text{cd, fat}} = \beta_{\text{cc}}(t_0) \cdot f_{\text{cd}} \cdot \left(1 - \frac{f_{\text{ck}}}{250}\right) \]

\(f_{\text{ck}} \)
charakteristische Zylinderdruckfestigkeit des Betons nach 28 Tagen
\(f_{\text{cd, max}} \)
Bemessungswert der maximalen Druckspannung
\(f_{\text{cd, min}} < 0 \)
Bemessungswert der minimalen Druckspannung am Ort von \(\sigma_{\text{cd, max}} \)

\[\beta_{\text{cc}}(t_0) = 0.2 \left(1 - \frac{1}{28/t_0}\right) \]
Beiwert für die Nacherhärtung

\(t_0 \)
Zeitpunkt der Erstbelastung des Betons in Tagen

Gilt auch für die Druckstreben von querkraftbeanspruchten Bauteilen mit Querkraftbewehrung, wobei

\[f_{\text{cd, fat, V}} = \alpha_c \cdot f_{\text{cd, fat}} \quad \text{und} \quad \alpha_c = 0.75 \cdot \eta_1 \]

Bauteile ohne Querkraftbewehrung:

wenn,

\[\frac{V_{\text{Ed, min}}}{V_{\text{Ed, max}}} \geq 0.0 : \frac{V_{\text{Ed, max}}}{V_{\text{Rd, ct}}} \leq 0.5 + 0.45 \cdot \frac{V_{\text{Ed, min}}}{V_{\text{Rd, ct}}} \]
\[\leq 0.9 \quad \text{ab C50/60 oder LC50/55} \]
\[\leq 0.8 \quad \text{ab C55/67 oder LC55/60} \]

wenn,

\[\frac{V_{\text{Ed, min}}}{V_{\text{Ed, max}}} < 0.0 : \frac{V_{\text{Ed, max}}}{V_{\text{Rd, ct}}} \leq 0.5 \]
\[- \frac{V_{\text{Ed, min}}}{V_{\text{Rd, ct}}} \]

mit

\(V_{\text{Ed, max}} \)
Bemessungswert der maximalen Querkraft
\(V_{\text{Ed, min}} \)
Bemessungswert der minimalen Querkraft am Ort von \(V_{\text{Ed, max}} \)
\(V_{\text{Rd, ct}} \)
Bemessungswert der aufnehmbaren Querkraft (s. Abs. 6.1.1, S. 26)

9.2.2 Nachweis n. Abschn. 10.8.3 (Stufe 2, GZT)

Falls der vereinfachte Nachweis versagt, kann anstelle eines expliziten Betriebsfestigkeitsnachweises der Nachweis gegen Ermüdung über schädigungsäquivalente Spannungsschwingbreiten für die Bewehrung und schädigungsäquivalente Druckspannungen für den Beton geführt werden. Im allgemeinen Hochbau sind nach 10.8.3(3) die folgenden Einwirkungskombinationen zu berücksichtigen:

- ständige Einwirkungen,
- wahrscheinlicher Wert der Setzungen, sofern ungünstig wirkend,
- häufiger Wert der Temperatureinwirkung, sofern ungünstig wirkend,
- Einwirkungen aus Nutzlasten.

Ermüdungs- (Schwing-)nachweis
Ständige Lasten, Setzungen und Temperatureinwirkungen verändern i. A. nicht die Spannungsschwingbreiten, sondern beeinflussen lediglich das Nachweisniveau.

Soll dagegen ein Industriebauwerk erstellt werden, ist natürlich die maßgebende ermüdungswirksame Einwirkung (z.B. aus Kranbahn- oder Gabelstaplerbelastung) zusätzlich anzusetzen.

9.2.2.1 Bewehrung

\[Y_{\text{F, fem}} \cdot Y_{\text{Ed, fem}} \cdot \Delta \sigma_{s, \text{equ}} \leq \Delta \sigma_{\text{Rsk}}(N^*) / Y_{s, \text{fem}} \text{ mit} \]

\[Y_{\text{F, fem}} = Y_{\text{Ed, fem}} = 1.0 \]
\[Y_{s, \text{fem}} = Y_{s} \]
\[\Delta \sigma_{\text{Rsk}}(N^*) \quad \text{Spannungsschwingbreite für N* Lastzyklen} \]

DIN 1045-1 (7.01):

- für \(N^* = 10^6 \): \(\Delta \sigma_{\text{Rsk}} = \xi \cdot 195 \text{ N/mm}^2 \) (gerade und gebogene Stäbe)
- für \(N^* = 10^7 \): \(\Delta \sigma_{\text{Rsk}} = \xi \cdot 58 \text{ N/mm}^2 \) (geschweißte Stäbe einschl. Heft- und Stumpfstoßverbindungen)

mit \(\xi = 0.35 + 0.026 \cdot d_{\text{br}} / d_s \leq 1.0 \)

\(d_{\text{br}} \) Biegerollendurchmesser
\(d_s \) Stabdurchmesser

\(\xi = 1.0 \) für \(d_s \leq 28 \text{ mm} \), \(\xi = 0.8 \) für \(d_s > 28 \text{ mm} \)

DIN 1045-1 (8.08):

- für \(N^* = 10^6 \): \(\Delta \sigma_{\text{Rsk}} = \xi_1 \cdot 175 \text{ N/mm}^2 \) (gerade und gebogene Stäbe)

mit \(\xi_1 = 0.35 + 0.026 \cdot d_{\text{br}} / d_s \leq 1.0 \)

\(d_{\text{br}} \) Biegerollendurchmesser
\(d_s \) Stabdurchmesser

für Stäbe mit \(d_s > 28 \text{ mm} \): \(\Delta \sigma_{\text{Rsk}} = 145 \text{ N/mm}^2 \) (nur hochduktile Betonstähle)

für \(N^* = 10^6 \): \(\Delta \sigma_{\text{Rsk}} = 85 \text{ N/mm}^2 \) (geschweißte Stäbe und Betonstahlmatten einschl. Heft- und Stumpfstoßverbindungen)

\[\Delta \sigma_{s, \text{equ}} \quad \text{schädigungsäquivalente Spannungsschwingbreite (i.A. } \Delta \sigma_{s, \text{equ}} = \text{max } \Delta \sigma_{s} \text{)} \]

max \(\Delta \sigma_{s} \) maximale Spannungsamplitude

9.2.2.2 Beton

\[E_{\text{cd, max, equ}} = \left| \frac{\sigma_{\text{cd, max, equ}}}{f_{\text{cd, fem}}} \right| \text{ mit} \]

\[E_{\text{cd, max, equ}} + 0.43 \cdot \sqrt{1 - R_{\text{equ}}} \leq 1.0 \]

\[R_{\text{equ}} = \frac{\sigma_{\text{cd, min, equ}}}{\sigma_{\text{cd, max, equ}}} \quad \text{obere bzw. untere Spannung der schädigungsäquivalenten Spannungsschwingbreite.} \]
10 Verformungsnachweis

Die Eurocode-nahen Normen DIN 1045-1, DIN-Fb 102, ÖN B 4700 und EC 2 sind bis auf wenige Unterschiede identisch. Im Folgenden wird sich auf DIN 1045-1 bezogen, Unterschiede zum DIN-Fachbericht, zur ÖN B 4700 und zum EC 2 sind besonders gekennzeichnet.

Eine Zusammenstellung der korrespondierenden Kapitel, Gleichungen und Tabellen ist unter Abs. 15, S. 62, zu finden.

Die Verformungen eines Bauteils oder eines Tragwerks dürfen weder die ordnungsgemäße Funktion noch das Erscheinungsbild des Bauteils selbst oder angrenzender Bauteile beeinträchtigen.

Es darf angenommen werden, dass das Erscheinungsbild und die Gebrauchstauglichkeit eines Tragwerks nicht beeinträchtigt werden, wenn der Durchhang unter der quasi-ständigen Einwirkungskombination (bzw. unter Gebrauchslast) das 1/250-fache der Stützweite (bei Kragträgern das 1/100 der Kraglänge) nicht überschreitet.

Der Grenzzustand der Verformung kann nachgewiesen werden

- über die Begrenzung der Biegeschlankheit (ohne direkte Berechnung),
- nach Grasser/Thielen (Heft 240, DAFStb).

10.1 Verformungsnachweis n. DIN 1045, 17.7.2

Begrenzung der Biegeschlankheit

- die Schlankheit von biegebeanspruchten Bauteilen darf nicht größer sein als 35.
- bei Bauteilen, die Trennwände zu tragen haben, soll die Schlankheit \(\frac{l_i}{h} \leq 150/l_i \) (\(l_i \) und \(h \) in m) sein.
- die Ersatzstützweite \(l_i \) wird nach Heft 240, DAFStb, angenommen zu \(l_i = \alpha \cdot L \) (\(\alpha \) s. Heft 240, DAFStb).
- das Verfahren ist nur anwendbar, wenn \(\alpha \geq 0 \) gilt.

10.2 Verformungsnachweis n. DIN 1045-1, 11.3.2 / ÖN B 4700, 4.3.2

Begrenzung der Biegeschlankheit

- die Schlankheit von biegebeanspruchten Bauteilen darf nicht größer sein als 35.
- bei Bauteilen, die Trennwände zu tragen haben, soll die Schlankheit \(\frac{l_i}{h} \leq 150/l_i \) (\(l_i \) und \(h \) in m) sein.
- die Ersatzstützweite \(l_i \) wird nach Heft 240, DAFStb, angenommen zu \(l_i = \alpha \cdot l_{eff} \) (\(\alpha \) s. Tab. 22 oder Heft 240, DAFStb).
- das Verfahren ist nur anwendbar, wenn \(\alpha \geq 0 \) gilt.
- bei Leichtbeton sind die Grenzwerte mit \(n_{E,0.15} \) abzumindern.

10.3 Verformungsnachweis n. EC 2, 7.4.2

Begrenzung der Biegeschlankheit

- der Grenzwert der Biegeschlankheit wird nach Gl. 7.16 ermittelt zu

\[
\frac{l_{eff}}{d} = K \left[11 + 1.5 \cdot \sqrt{c_k} \cdot \frac{p_0}{\rho} + 3.2 \cdot \sqrt{c_k} \left(\frac{p_0}{\rho} - 1 \right)^{\frac{3}{2}} \right]
\]

wenn \(\rho \leq p_0 \)
$l_{\text{eff}} = K \cdot \left[11 + 1.5 \cdot \frac{\rho_0}{f_{ck}} \cdot \frac{\rho}{\rho - \rho'} + \frac{1}{12} \cdot \sqrt{f_{ck} \cdot \frac{\rho}{\rho_0}} \right]$ \quad \text{wenn} \ \rho > \rho_0$

K \quad \text{Beiwert zur Berücksichtigung der verschiedenen statischen Systeme kann einem nationalen Anhang entnommen werden. Voreingestellt sind mit} \ K = 0 \ \text{die Werte aus Tab.7.4N.}$

$\rho_0 = \sqrt{f_{ck} \cdot 10^{-3}}$ \ \text{Referenzbewehrungsgrad,} \ f_{ck} \ \text{in N/mm}^2$

ρ, ρ' \ \text{erforderlicher Zug-, Druckbewehrungsgrad in Feldmitte (am Einspannquerschnitt von Kragträgern)}

- bei Bauteilen, die Trennwände zu tragen haben, sind die Werte mit $7/l_{\text{eff}}$ (l_{eff} in m) zu multiplizieren.
- bei Plattenbalken oder I-Profilen mit einem Verhältnis von mitwirkender Breite zu Stegbreite > 3 sind die Werte mit 0.8 zu multiplizieren.
- bei Leichtbeton sind die Grenzwerte mit $0.15 \ E_\eta$ abzumindern (11.7(1)P).

Nach NA-DE sollten die Biegeschlankheiten auf die Maximalwerte begrenzt werden

- allgemein: $l/d \leq K \cdot 35$
- Bauteile mit verformungsempfindlichen Ausbauelementen: $l/d \leq K^2 \cdot 150 / l$

Die Biegeschlankheitsgrenzen nach EC2 sind deutlich strenger als die aus DIN 1045-1, da die Schadensfreiheit mit dem Nachweis nach der älteren Norm aufgrund der höheren Ausnutzung der Tragwerke nicht mehr in jedem Fall gewährleistet ist.

Wird trotzdem der Nachweis der Biegeschlankheit nach DIN 1045-1 gewählt, muss beachtet werden, dass die Einstellung ”Vorgabe des Beiwerts K” entsprechend interpretiert wird als ”Vorgabe des Beiwerts α‘ (s.o.).

10.4 Verformungsnachweis n. Heft 240, DAFStb

Beschränkung der Durchbiegung unter Gebrauchslast

Es wird die wahrscheinliche Durchbiegung des Trägers zum Anfangs- sowie Endzeitpunkt der Lastaufbringung ermittelt, die zwischen derjenigen im Zustand 1 (Träger vollständig ungerissen) und Zustand 2 (Träger vollständig gerissen) liegt.

Dazu wird die Ersatzstützweite $l_i = \alpha \cdot L$ bestimmt über

$\alpha = \frac{1 + 4.8 \cdot (m_1 + m_2)}{1 + 4 \cdot (m_1 + m_2)}$ \quad \text{(für beidseits gestützte Felder von Durchlaufträgern) bzw.}$

$\alpha = 0.8 \cdot \left[\frac{l}{l_k} \left(4 + 3 \cdot \frac{l_k}{l} \right) - \frac{q}{q_k} \left(\frac{l}{l_k} \right)^3 \cdot (4 \cdot m_k + 1) \right]$ \quad \text{(für Kragbalken an Durchlaufträgern)}$

m_1, m_2, m_k \ \text{auf} \ q \cdot \ l^2 \ \text{bezogene Momente über den Stützen des betrachteten Innenfeldes}$

(m_1, m_2) \ \text{bzw. über der vom Kragarm abliegenden Stütze des anschließenden Innenfeldes (m_k).}$

q, q_k \ \text{maßgebliche Gleichlast des untersuchten Feldes (q), bei Krag trägern des an den Kragarm anschließenden Feldes (q) bzw. die maßgebliche Gleichlast des Kragarmes (q_k).}$

l, l_k \ \text{Stützweite des untersuchten Feldes (l), bei Krag trägern des an den Kragarm anschließenden Feldes (l) bzw. die Kragarmlänge (l_k).}$
Das Verfahren ist nur anwendbar, wenn gilt

\[m_1 \geq -\left(m_2 + \frac{5}{24} \right) \]
bei beidseits gestützten Feldern von Durchlaufträgern

\[m_k \leq \frac{q_k}{q} \left(\frac{l_k}{l} \right)^2 \left[4 + 3 \frac{l_k}{l} \right] - \frac{1}{4} \]
bei Kragbalken an Durchlaufträgern

Die Berechnungen der Durchbiegungen setzen sich zusammen aus dem Grundwert der Durchbiegung, Anteilen aus der Bewehrungsmenge und -anordnung, Kriech- sowie Schwindanteilen.

Aus den Durchbiegungen zu den Zeitpunkten \(t_0 \) und \(t_\infty \) im reinen Zustand 1 und 2 wird die wahrscheinliche Durchbiegung ermittelt zu

\[f_0 = f_0^II - \frac{M_{R0}}{M_F} (f_0^II - f_0^I) \]
zu \(t_0 \)

\[f_\infty = f_\infty^II - \frac{M_{R\infty}}{M_F} (f_\infty^II - f_\infty^I) \]
zu \(t_\infty \)

\[\frac{M_{R0}}{M_F} \leq 1 \text{ bzw. } \frac{M_{R\infty}}{M_F} \leq 1 \]
\(M_R \) Rissmoment, \(M_F \) maximales Feld- bzw. Kragmoment im betrachteten Bauteil

Verformungsnachweis
mitwirkende Plattenbreite

Anmerkungen zum EC 2: Der deutsche Nationale Anhang des Eurocodes wird in den pcae-Programmen derzeit nicht unterstützt. Sämtliche Parameter, die nicht frei eingebbar sind, folgen somit der Empfehlung des Eurocodes.

11.1 DIN 1045, 15.3 / DIN 1045-1, 7.3.1 / DIN-Fb 102, 2.5.2.2.1 / EC 2, 5.3.2.1

Bei Plattenbalken- bzw. plattenbalkenähnlichen Querschnitten darf vereinfachend die mitwirkende Plattenbreite bei Durchführung der Nachweise unter Traglast- und Gebrauchslast angesetzt werden.

Das Programm benötigt zur automatischen Ermittlung Angaben über den Untersuchungsort (Endfeld, Innenfeld, Kragarm, Stützbereich, Einfeldträger), die entsprechenden Feldlänge(n) \(l_i \) sowie die vorhandenen Gurtbreiten \(b_{i,} \).

Die mitwirkende Plattenbreite wird dann berechnet zu

\[
b_{\text{eff}, i} = b_{w, i} + \sum b_{\text{eff}, j} \leq b_p \quad \text{mit} \quad b_{\text{eff}, j} = b_{\text{eff}, j+1} \quad \text{(nur gleichseitige Plattenbalken)}.
\]

DIN 1045 bzw. Heft 240, DAfStb

\[
b_{\text{eff}, i} = \beta \cdot b_i \quad \text{mit} \quad \beta \text{ n. Tafel 1.1 oder 1.2}
\]

DIN 1045-1, DIN-Fb 102, EC 2

\[
b_{\text{eff}, j} = 0.2 \cdot b_i + 0.1 \cdot l_0 \leq 0.2 \cdot l_0
\]

ÖN B 4700

\[
b_{\text{eff}, j} = 0.1 \cdot l_0
\]

EC 2

Für den Kragträger gilt: \(l_0 = 0.15 \cdot l_2 + l_3 \) wird derzeit nicht unterstützt.
12 **Bemessung von unbewehrtem Beton**

Die Bemessung von unbewehrtem Beton nach DIN Fb 102 und ÖN B 4700 wird nicht unter-
stützt.

12.1 **DIN 1045, 17.9**

Bei Bauteilen aus unbewehrtem Beton dürfen höhere Betonfestigkeiten als B35 rechnerisch
nicht ausgenutzt werden. Der Last-Sicherheitsbeiwert ist mit 2.1 anzunehmen.

Die Einflüsse von Schlankeit und ungewollter Ausmitte dürfen näherungsweise durch Verrin-
gerung der zulässigen Last mit dem Beiwert κ berücksichtigt werden:

$$\kappa = 1 - \frac{\lambda^2}{140} \left(1 + \frac{m}{3}\right)$$

mit

- $m = e / k$ bezogene Ausmitte im Gebrauchszustand
- $e = M / N$ planmäßige Ausmitte im mittleren Drittel des Knickstabes
- $k = W_d / A_B$ Kernweite des Betonquerschnitts (Rechteckquerschnitt: $k = d/6$)
- $\lambda = s_k / i$ Schlankeit
- s_k Knicklänge
- $i = (l_b / A_b)^{0.5}$ Trägheitsradius in Knickrichtung

Bildet sich eine klaffende Fuge aus, die über den Schwerpunkt des Gesamtquerschnitts geht,
ist die Tragfähigkeit überschritten.

12.2 **DIN 1045-1**

Nach 10.2(2) dürfen bei Bauteilen aus unbewehrtem Beton höhere Betonfestigkeiten als C35/45
bzw. LC20/22 rechnerisch nicht ausgenutzt werden.

12.2.1 **Biegemessung**

Nach 5.3.3(8) ist der Sicherheitsbeiwert im Grenzzustand der Tragfähigkeit für die ständige und
vorübergehende Bemessungssituation mit $\gamma_c = 1.8$ und für außergewöhnliche Bemessungssi-
tuationen mit $\gamma_c = 1.55$ anzusetzen.

Bildet sich eine klaffende Fuge aus, die über den Schwerpunkt des Gesamtquerschnitts geht,
ist die Tragfähigkeit überschritten.

12.2.2 **Druckglieder aus unbewehrtem Beton (Theorie II.Ord.)**

Nach 8.6.7(3) darf der Bemessungswert der Normalkraft berechnet werden mit

$$N_{Rd} = -(b \cdot h \cdot f_{cd} \cdot \varphi)$$

mit

- φ Beiwert zur Berücksichtigung der Auswirkungen nach Th. II. Ord.

Für unverschieblich ausgesteifte Bauteile gilt

$$\varphi = 1.14 \cdot (1 - 2 \cdot e_{tot} / h) - 0.02 \cdot l_0 / h \quad \text{und} \quad 0 \leq \varphi \leq 1 - 2 \cdot e_{tot} / h$$

mit

- $e_{tot} = e_0 + e_a + e_\varphi$ Gesamtausmitte
- e_0 Lastausmitte nach Th. I. O.
- e_a ungewollte zusätzliche Ausmitte infolge geometrischer Imperfektionen
 ($e_a = 0.5 \cdot l_0 / 200$)
- e_φ Ausmitte infolge Krümmen (i.A. $e_\varphi = 0$)
- l_0 Knicklänge

Nach 8.6.7(2) hat die Schlankeit unbewehrter Druckglieder i.d.R. den Wert $\lambda = 0.85$ nicht zu
überschreiten.
Nach 8.6.7(1) ist für Druckglieder aus unbewehrtem Beton mit $l_{cd}/h < 2.5$ der Einfluss nach Th. II. Ord. vernachlässigbar.

12.2.3 Schubbemessung

Nach 10.3.7(2) darf ein unbewehrtes Bauteil als ungerissen angesehen werden, wenn die Hauptzugspannung die Größe von 1.0 N/mm2 nicht überschreitet. Nach 10.3.7(3) ist ansonsten der Bemessungswert der Querkrafttragfähigkeit am ungerissenen Restquerschnitt zu berechnen. Dieser ergibt sich nach 10.3.3(2) unter der Voraussetzung, dass die Betonzugspannungen stets kleiner sind als $f_{ctk;0.05}/\gamma_c$, zu

$$V_{Rd} = V_{Rd,ct} = \frac{l_c \cdot b_{w} \cdot \sqrt{\left(\frac{f_{ctk;0.05}}{\gamma_c}\right)^2 - \alpha_l \cdot \sigma_{cd} \cdot \frac{f_{ctk;0.05}}{\gamma_c}}}{S_c}$$

mit

- l_c: Flächenmoment 2. Grades
- S_c: Flächenmoment 1. Grades
- $\alpha_l = 1$: Vorfaktor
- $f_{ctk;0.05} \leq 2.7$ N/mm2: unterer Quantilwert der Betonzugfestigkeit
- γ_c: Teilsicherheitsbeiwert für unbewehrten Beton
- b_{w}: kleinste Querschnittsbreite
- $\sigma_{cd} = N_{Ed}/A_c$: Bemessungswert der Betonlängsspannung in Höhe des Schwerpunkts

12.3 EC 2

12.3.1 Biegebemessung

Nach 12.3.1(1) sind aufgrund der geringeren Duktilität die Werte $\alpha_{cc,pl}$ und $\alpha_{ct,pl}$ geringer anzusetzen als die Werte α_{cc} und α_{ct} für bewehrten Beton.

Der axiale Widerstand ergibt sich nach 12.6.1(3) zu

$$N_{Rd} = \eta f_{cd} \cdot b \cdot h_w \cdot \left(1 - 2 \cdot e/h_w\right)$$

mit

- ηf_{cd}: wirksame Bemessungsdruckkraft
- b: Gesamtbreite des Querschnitts
- h_w: Gesamtdicke des Querschnitts
- e: Lastausmitte von N_{Ed} in Richtung h_w

12.3.2 Auswirkungen von Verformungen (Th. II. Ord.) auf Einzeldruckglieder und Wände

Nach 12.6.5.2(1) darf der Bemessungswert der Normalkraft berechnet werden mit

$$N_{Rd} = \eta f_{cd} \cdot b \cdot h_w \cdot \Theta \cdot \Phi$$

mit

- Θ: Faktor zur Berücksichtigung der Lastausmitte
- $\Phi = 1.14 \cdot \left(1 - 2 \cdot e_{tot}/h_w\right) - 0.02 \cdot l_0/h_w \leq \left(1 - 2 \cdot e_{tot}/h_w\right)$

Mit

- $e_{tot} = e_0 + e_i$: Gesamtausmitte
- e_0: Lastausmitte nach Th. I. O.
- e_i: ungewollte zusätzliche Ausmitte infolge geometrischer Imperfektionen
- l_0: Knicklänge

Nach 12.6.5.1(5) hat die Schlankheit unbewehrter Druckglieder i.d.R. den Wert $\lambda = 0.86$ nicht zu überschreiten.
12.3.3 Schubbemessung

Nach 12.6.3(3) darf ein unbewehrtes Bauteil als ungerissen angesehen werden, wenn die Hauptzugspannung den Wert f_{cd} nicht überschreitet. Die Komponenten des Bemessungswertes der Schubspannung sind nach 12.6.3(2) anzusetzen mit

$$\tau_{cp} = k \cdot \frac{V_{Ed}}{A_{cc}} \quad \text{und} \quad \sigma_{cp} = \frac{N_{Ed}}{A_{cc}}$$

mit

$$f_{vcd} \quad \text{Bemessungswert der Betonfestigkeit bei Querkraft und Druck}$$

wenn $\sigma_{cp} \leq \sigma_{c,lim}$

$$f_{vcd} = \sqrt{\frac{f_{cd}^2}{\sigma_{cp}^2} + \sigma_{cp} \cdot f_{cd}}$$

wenn $\sigma_{cp} > \sigma_{c,lim}$

$$f_{vcd} = \sqrt{\frac{f_{cd}^2 + \sigma_{cp} \cdot f_{cd} - \left(\frac{\sigma_{cp} - \sigma_{c,lim}}{2}\right)^2}{f_{cd}^2 + \sigma_{cp} \cdot f_{cd}}}$$

$$\sigma_{c,lim} = f_{cd} \cdot 2 \cdot \sqrt{f_{cd} - f_{cd}}$$

13 Umschnürte Druckglieder

In den Eurocode-nahen Normen werden keine Angaben zur Ermittlung der durch eine wendelförmig angebrachte Bewehrung zusätzlich aufnehmbaren Bruchnormalkraft gemacht. Daher kann der günstige Einfluss einer Wendelbewehrung nicht berücksichtigt werden.

13.1 DIN 1045, 17.3.2

Bei relativ großen Betonstauchungen führt eine wendelartige Umschnürung des Druckgliedes zu einer Traglaststeigerung. Dieser Einfluss darf nur bei Druckgliedern mit mindestens der Festigkeitsklasse B 25 und nur bis zu einer Schlankheit ≤ 50 und einer Lastausmitte $< 1/8$ des Kern- bzw. Wendeldurchmessers in Rechnung gestellt werden. Außerdem ist der Einfluss der Zusatzmomente nach Th. II. Ord. zu berücksichtigen, d.h. die Eingabeschnittgrößen sind nach Th. II. Ord. zu ermitteln.
Vereinfacher Knicknachweis für Einzeldruckglieder

Die Eurocode-nahen Normen DIN 1045-1, DIN-Fb 102, ÖN B 4700 und EC 2 sind bis auf wenige Unterschiede identisch. Im Folgenden wird sich auf DIN 1045-1 bezogen, Unterschiede zum DIN-Fachbericht, zur ÖN B 4700 und zum EC 2 sind besonders gekennzeichnet.

Eine Zusammenstellung der korrespondierenden Kapitel, Gleichungen und Tabellen ist unter Abs. 15, S. 62, zu finden.

14.1 DIN 1045-1, 8.6 / EC 2, 5.8.3

Bei Einzeldruckgliedern darf durch Vergleich der Schlankheit mit Grenzwerten entschieden werden, ob Einflüsse nach Theorie II. Ordnung berücksichtigt werden müssen.

Einzeldruckglieder gelten als schlank, wenn

\[\lambda > \lambda_{\text{max}} \]

mit

\[\lambda = \frac{l_0}{i_T} \]
\[i_T = \frac{I_c}{A_c} \]

Trägheitsradius des Querschnitts

\[l_0 = \beta \cdot l_{\text{col}} \]

(\(\beta \) nach 8.6.2(4), bei Pendelstützen: \(\beta = 1 \) Knicklänge)

\[\lambda_{\text{max}} = \frac{16}{\sqrt{N_{Ed}}} \geq 25 \]
\[v_{Ed} = \frac{|N_{Ed}|}{A_c \cdot f_{cd}} \]

Einzeldruckglieder in unverschieblich ausgesteiften Tragwerken brauchen nicht nach Th. II. O. untersucht werden, wenn

\[\lambda > \lambda_{\text{crit}} \]

mit

\[\lambda_{\text{crit}} = 25 \cdot (2 - e_{01}/e_{02}) \]

\[e_{01}/e_{02} \leq 1 \]

Verhältnis der Lastausmitten an den Stützenenden.

Bei Pendelstützen: \(e_{01}/e_{02} = 1 \).

Die Bemessung erfolgt mit dem Modellstützenverfahren (6.8.5).

14.2 DIN 1045-1, 8.6.5 / EC 2, 5.8.8

Das Modellstützenverfahren (DIN 1045-1, 8.6.5) gilt für Druckglieder mit einer Lastausmitte nach Theorie I. Ordnung \(e \geq 0.1 \cdot h \), kann aber auch für Lastausmitten \(e < 0.1 \cdot h \) angewendet werden.

Die Modellstütze ist eine am Fuß eingespannte, symmetrisch bewehrte Kragstütze der Länge \(l = l_0/2 \), die eine einfach gekrümmte Verformungsfigur aufweist. Die Übertragung auf anders gelagerte Stützen erfolgt über die Ersatzlänge \(l_0 \).

Die Gesamtausmitte nach Theorie II. Ordnung ergibt sich zu

\[e_{\text{tot}} = e_0 + e_a + e_2 \]

\[e_0 = M_{Ed_0}/N_{Ed} \]

planmäßige Ausmitte im am stärksten beanspruchten Querschnitt

\[e_a = \alpha_{a1} \cdot l_0/2 \]

ungewollte Lastausmitte aus Imperfektionen mit

60 Stahlbetontheorie
\[\alpha_{a1} = \frac{1}{100 \cdot \sqrt{\text{col}}} \leq \frac{1}{200} \] (Winkel der Schiefstellung)

\[e_2 = K_1 \cdot K_\varphi \cdot \frac{(1/r) \cdot c \cdot \ell_0^2}{2} \] zusätzliche Lastausmitte infolge Auswirkungen nach Th. II. O.

\[K_1 = \frac{\lambda}{10} - 2.5 \leq 1 \] Anpassungsfaktor

\[\left. \begin{array}{l}
K_\varphi = \frac{1}{c} \\
\text{Beiwert für den Krümmungsverlauf}
\end{array} \right\} \begin{array}{l}
\text{(parabelförmig: } c = 5/48, \text{ rechteckförmig: } c = 1/8, \text{ dreieckförmig: } c = 1/12) \\
\text{hier Annahme: } c = 5/48
\end{array} \]

\[(1/r) = 2 \cdot K_2 \cdot \varepsilon_{yd}/\Delta h_s \] Krümmung im kritischen Schnitt,

\[\Delta h_s \text{ Abstand der Stahllagen (Annahme: } \Delta h_s = 0.9 \cdot d) \]

\[K_2 = \frac{N_{ud} - N_{Ed}}{N_{ud} - N_{bal}} \leq 1, \quad N_{ud} = -(f_{cd} \cdot A_c + f_{yd} \cdot A_s) \]

\[\text{hier: Annahme } K_2 = 1 \text{ (liegt auf der sicheren Seite)} \]

\[K_\omega = 1+\beta \cdot \varphi_{\text{eff}} \geq 1 \] Beiwert zur Berücksichtigung von Kriecheinflüssen

\[\varphi_{\text{eff}} = \varphi(\infty, t_0) \cdot \frac{M_{1\text{perm}}}{M_{1\text{Ed}}} \text{ mit } \varphi(\infty, t_0) \text{ Endkriechzahl und } M_{1\text{perm}}/M_{1\text{Ed}} \text{ Verhältnis der Biegemomente unter quasi-ständiger (GZG) zur Bemessungs-Einwirkungskombination (GZT) nach Th. I. O. inkl. Imperfektionen} \]

\[\beta = 0.35 + f_{ck}/200 - \lambda/150 \geq 0 \]

Die Stütze wird bemessen für \(M_{1\text{Ed, Th.II.O.}} = N_{Ed} \cdot e_{\text{tot}}, \) wobei \(e_{\text{tot}} \geq h/20 \) (s. 8.6.3(9)).
<table>
<thead>
<tr>
<th>DIN 1045-1 (7.01, 8.08)</th>
<th>DIN-Fb 102 (3.09)</th>
<th>DIN EN 1992-1-1 (EC2, 10.05)</th>
<th>ÖNORM B 4700 (6.01)</th>
<th>Thema</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>1.4</td>
<td>1.5</td>
<td>-</td>
<td>Begriffe</td>
</tr>
<tr>
<td>5.3.3 (8)</td>
<td>-</td>
<td>12.3.1 (1)</td>
<td>-</td>
<td>unbewehrter Beton - Sicherheitsniveau</td>
</tr>
<tr>
<td>7.3.1</td>
<td>2.5.2.2.1</td>
<td>5.3.2.1</td>
<td>3.3.4</td>
<td>mitwirkende Plattenbreite</td>
</tr>
<tr>
<td>8.2 (3)</td>
<td>2.5.3.4.2 (5)</td>
<td>5.6.3 (2)</td>
<td>3.3.2.1 (2)</td>
<td>Vereinfachter Nachweis der plastischen Rotation</td>
</tr>
<tr>
<td>8.2 (5)</td>
<td>2.5.3.3 (5)*</td>
<td>5.3.2.2 (3)</td>
<td>3.3.3.1 (3)</td>
<td>Mindeststützmoment am Auflagerrand</td>
</tr>
<tr>
<td>8.3 (3)</td>
<td>2.5.3.4.2 (3)*P</td>
<td>5.5 (4)</td>
<td>3.3.2.1 (2)</td>
<td>Umlagerungsgrenzen</td>
</tr>
<tr>
<td>9.1</td>
<td>3.1.4</td>
<td>3.1</td>
<td>3.4.1.1</td>
<td>Betonfestigkeitsklassen</td>
</tr>
<tr>
<td>9.1.4</td>
<td>3.1.5.5</td>
<td>3.1.4</td>
<td>3.2.1 (2), (3)</td>
<td>Beton - Kriechen und Schwinden</td>
</tr>
<tr>
<td>9.1.5</td>
<td>4.2.1.3.3 a),</td>
<td>3.1.5</td>
<td>-</td>
<td>Beton (Spannungsdehnungslinie für Verformungsberechnungen)</td>
</tr>
<tr>
<td></td>
<td>Abb. 4.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.1.6</td>
<td>4.2.1.3.3 b),</td>
<td>3.1.7</td>
<td>3.4.1.1 (4)</td>
<td>Beton (Spannungsdehnungslinie für die Bemessung, Parabel-Rechteck-Diagr.)</td>
</tr>
<tr>
<td></td>
<td>Abb. 4.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tab. 9, Tab. 10</td>
<td>Tab. 3.1, Tab. 3.2</td>
<td>Tab. 3.1, 11.3.1</td>
<td>Tab. 4</td>
<td>Betonkennwerte</td>
</tr>
<tr>
<td>9.2.3</td>
<td>4.2.2.3.2 a),</td>
<td>3.2, Anhang C</td>
<td>-</td>
<td>Betonstahl (Spannungsdehnungslinie für Verformungsberechnungen)</td>
</tr>
<tr>
<td></td>
<td>Abb. 4.5 a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.2.4</td>
<td>4.2.2.3.2 b),</td>
<td>3.2</td>
<td>3.4.1.2</td>
<td>Betonstahl (Spannungsdehnungslinie für die Bemessung)</td>
</tr>
<tr>
<td></td>
<td>Abb. 4.5 b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.2</td>
<td>4.3.1</td>
<td>6.1</td>
<td>3.4.2</td>
<td>Biegung mit oder ohne Längskraft und Längskraft allein</td>
</tr>
<tr>
<td>10.3</td>
<td>4.3.2</td>
<td>6.2</td>
<td>3.4.4</td>
<td>Querkraft</td>
</tr>
<tr>
<td>10.3.2 (2)</td>
<td>4.3.2.2 (11)*</td>
<td>6.2.2 (6)</td>
<td>3.4.4.2 (12)</td>
<td>Querkraft – auflagernahe Einzellasten</td>
</tr>
<tr>
<td>10.3.3 (1)</td>
<td>4.3.2.3 (1)*P</td>
<td>6.2.2 (1)</td>
<td>3.4.4.4 (1)</td>
<td>Querkraft – Querkrafttragfähigkeit ohne Bewehrung</td>
</tr>
<tr>
<td>10.3.4 (2)</td>
<td>4.3.2.4.2 (2)*</td>
<td>6.2.3 (1)</td>
<td>3.4.4.2 (3)</td>
<td>Querkraft – innerer Hebelarm</td>
</tr>
<tr>
<td>10.3.4 (3)</td>
<td>4.3.2.4.4 (1)*P</td>
<td>6.2.3 (2)</td>
<td>3.4.4.2 (7)</td>
<td>Querkraft – Grenzen für die Druckstrebenneigung</td>
</tr>
<tr>
<td>10.3.4 (6)</td>
<td>4.3.2.4.4 (2)*P</td>
<td>6.2.3 (3), (4)</td>
<td>3.4.4.2 (9)</td>
<td>Querkraft – Querkrafttragfähigkeit mit Bewehrung</td>
</tr>
<tr>
<td>10.3.5</td>
<td>4.3.2.5</td>
<td>6.2.4</td>
<td>3.4.4.3</td>
<td>Anschluss der Gurte an den Balkensteg</td>
</tr>
<tr>
<td>10.3.6</td>
<td>4.3.2.6</td>
<td>6.2.5</td>
<td>3.4.4.5</td>
<td>Schubkraftübertragung in Fugen</td>
</tr>
<tr>
<td>10.3.7</td>
<td>-</td>
<td>12.6.3 (2)</td>
<td>-</td>
<td>Schubbemessung für unbew. Beton</td>
</tr>
<tr>
<td>10.4</td>
<td>4.3.3</td>
<td>6.3</td>
<td>3.4.6</td>
<td>Torsion</td>
</tr>
<tr>
<td>10.6.2 (2) a)</td>
<td>4.3.8.2 (2)*P a</td>
<td>6.5.2 (1)</td>
<td>11.2 (3) a</td>
<td>Bemessung von Druckstreben – Hauptdruckspannungsnachweis</td>
</tr>
<tr>
<td>10.8</td>
<td>4.3.7</td>
<td>6.8</td>
<td>-</td>
<td>Nachweis gegen Ermüdung</td>
</tr>
<tr>
<td>10.8.3</td>
<td>4.3.7.8</td>
<td>6.8.5, 6.8.7 (1)</td>
<td>-</td>
<td>Nachweis gg. Erm. – im GZT (Stufe 2)</td>
</tr>
<tr>
<td>DIN 1045-1 (7.01, 8.08)</td>
<td>DIN-Fb 102 (3.09)</td>
<td>DIN EN 1992-1-1 (EC2, 10.05)</td>
<td>ÖNORM B 4700 (6.01)</td>
<td>Thema</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------------</td>
<td>-----------------------------</td>
<td>----------------------</td>
<td>-------</td>
</tr>
<tr>
<td>10.8.4</td>
<td>4.3.7.4, 4.3.7.5</td>
<td>6.8.6, 6.8.7 (2)</td>
<td>-</td>
<td>Nachweis gegen Ermüdung – Nachweis im GZG (Stufe 1)</td>
</tr>
<tr>
<td>10.8.4 (5), (6)</td>
<td>4.3.7.4 (102)P, (103)P</td>
<td>6.8.7 (3), (4)</td>
<td>-</td>
<td>Nachweis gegen Ermüdung – Nachweis für Querkraft im GZG (Stufe 1)</td>
</tr>
<tr>
<td>11.1</td>
<td>4.4.1</td>
<td>7.2</td>
<td>-</td>
<td>Begrenzung der Spannungen</td>
</tr>
<tr>
<td>11.1.2</td>
<td>4.4.1.2</td>
<td>7.2 (2), (3)</td>
<td>-</td>
<td>Begrenzung der Betondruckspannungen</td>
</tr>
<tr>
<td>11.1.3</td>
<td>4.4.1.3</td>
<td>7.2 (5)</td>
<td>-</td>
<td>Begrenzung der Betonstahlspannungen</td>
</tr>
<tr>
<td>11.2</td>
<td>4.4.2</td>
<td>7.3</td>
<td>4.2</td>
<td>Begrenzung der Rissbreiten</td>
</tr>
<tr>
<td>11.2.1, Tab. 18</td>
<td>4.4.0.3, Tab. 4.118</td>
<td>7.3.1 (5), Tab. 7.1N</td>
<td>4.2.1 (2)</td>
<td>Anforderungen an die Begrenzung der Rissbreite</td>
</tr>
<tr>
<td>Tab. 20</td>
<td>Tab. 4.120</td>
<td>Tab. 7.2N</td>
<td>Tab. 8a,b</td>
<td>Grenzdurchmesser zur Begrenzung der Rissbreite</td>
</tr>
<tr>
<td>11.2.2</td>
<td>4.4.2.2</td>
<td>7.3.2</td>
<td>4.2.2</td>
<td>Mindestbewehrung zur Begrenzung der Rissbreite</td>
</tr>
<tr>
<td>11.2.2 (8)</td>
<td>4.4.2.2 (9)</td>
<td>-</td>
<td>-</td>
<td>Mindestbewehrung bei dickeren Bauteilen unter zentrischem Zwang</td>
</tr>
<tr>
<td>11.2.3</td>
<td>4.4.2.3</td>
<td>7.3.3</td>
<td>4.2.3</td>
<td>Begrenzung der Rissbreite ohne direkte Berechnung</td>
</tr>
<tr>
<td>11.2.4</td>
<td>4.4.2.4</td>
<td>7.3.4</td>
<td>-</td>
<td>Berechnung der Rissbreite</td>
</tr>
<tr>
<td>11.3</td>
<td>4.4.3</td>
<td>7.3.4</td>
<td>4.3</td>
<td>Verformungsnachweis</td>
</tr>
<tr>
<td>11.3.2</td>
<td>-</td>
<td>7.4.2</td>
<td>4.3.2</td>
<td>Nachweis der Biegeschlankheit</td>
</tr>
<tr>
<td>12</td>
<td>5.2.1</td>
<td>8</td>
<td>5</td>
<td>Allgemeine Bewehrungsregeln</td>
</tr>
<tr>
<td>12.5</td>
<td>5.2.2.2</td>
<td>8.4.2</td>
<td>5.4.2</td>
<td>Verbundspannung</td>
</tr>
<tr>
<td>12.6.2</td>
<td>5.2.2.3, 5.2.3.4</td>
<td>8.4.3, 8.4.4 (2)</td>
<td>5.5.2, 5.5.3</td>
<td>Verankerungslänge</td>
</tr>
<tr>
<td>13</td>
<td>5.4</td>
<td>9</td>
<td>-</td>
<td>Konstruktionsregeln</td>
</tr>
<tr>
<td>13.1.1 (1)</td>
<td>5.4.2.1.1 (101), 4.3.1.3 (109)P</td>
<td>9.2.1.1 (1)</td>
<td>3.4.9.4 (1)</td>
<td>Mindestbewehrung für Biegeglieder (duktiles Bauteilverhalten)</td>
</tr>
<tr>
<td>13.2.1 (1)</td>
<td>-</td>
<td>9.2.1.2 (1)</td>
<td>-</td>
<td>Mindeststützmomente am Endauflager</td>
</tr>
<tr>
<td>13.2.1 (2)</td>
<td>5.4.2.1.1 (3)</td>
<td>-</td>
<td>-</td>
<td>Auslagerung der Längsbewehrung bei Plattenbalken und Hohlkästen</td>
</tr>
<tr>
<td>13.2.2 (3)</td>
<td>5.4.2.1.3 (3)*</td>
<td>9.2.1.3 (2)</td>
<td>3.4.4.2 (16)</td>
<td>Versatzmaß</td>
</tr>
<tr>
<td>13.2.3 (5)</td>
<td>5.4.2.2 (3)*P</td>
<td>9.2.2 (5)</td>
<td>3.4.9.4 (2)</td>
<td>Mindestquerkraftbewehrung für Biegeglieder</td>
</tr>
<tr>
<td>13.3.3 (2)</td>
<td>5.4.3.3 (2)*P</td>
<td>6.2.1 (4)</td>
<td>3.4.4.4 (1)</td>
<td>Mindestquerkraftbewehrung für Platten bei $V_{Ed} \leq V_{Rd,ct}$</td>
</tr>
<tr>
<td>13.2.3 (5)</td>
<td>5.4.2.2 (4)*P</td>
<td>9.3.2 (2)</td>
<td>3.4.9.5 (2)</td>
<td>Mindestquerkraftbewehrung für Platten</td>
</tr>
<tr>
<td>13.2.3 (9)</td>
<td>5.4.2.2 (7)*P</td>
<td>-</td>
<td>-</td>
<td>Querkraftdeckung</td>
</tr>
<tr>
<td>13.3.2 (2), (3)</td>
<td>5.4.3.2.1 (2)*P, (3)*P</td>
<td>9.3.1.1 (2)</td>
<td>3.4.9.5 (1)</td>
<td>Querbewehrung von Platten</td>
</tr>
<tr>
<td>13.5.2 (1)</td>
<td>5.4.1.2.1 (1)*P</td>
<td>9.5.2 (2)</td>
<td>3.4.9.2</td>
<td>Mindestbewehrung für stabförmige Druckglieder (Stützen)</td>
</tr>
</tbody>
</table>

Korrespondierende Kapitelnummern

63
<table>
<thead>
<tr>
<th>DIN 1045-1 (7.01, 8.08)</th>
<th>DIN-Fb 102 (3.09)</th>
<th>DIN EN 1992-1-1 (EC2, 10.05)</th>
<th>ÖNORM B 4700 (6.01)</th>
<th>Thema</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.5.3</td>
<td>5.4.1.2.2</td>
<td>9.5.3</td>
<td>9.2.3</td>
<td>Querbewehrung für stabförmige Druckglieder (Stützen)</td>
</tr>
<tr>
<td>13.7.1 (3)</td>
<td>5.4.7.2 (1)*P</td>
<td>9.6.2 (1)</td>
<td>3.4.9.3</td>
<td>Mindestbewehrung für flächenhafte Druckglieder (Wände)</td>
</tr>
<tr>
<td>13.7.1 (9)</td>
<td>5.4.7.2 (4)*P</td>
<td>9.6.4</td>
<td>9.3.4</td>
<td>Mindestbügelbewehrung für flächenhafte Druckglieder (Wände)</td>
</tr>
<tr>
<td>Tab. 31</td>
<td>Tab. 5.8</td>
<td>9.3.2 (3)</td>
<td>3.4.4.2 (11)</td>
<td>Querkraftausnutzung</td>
</tr>
</tbody>
</table>

In pcae-Programmen können die veränderbaren Parameter in einem separaten Eigenschaftsblatt angesehen und ggf. modifiziert werden. Die Liste der Parameter wird im Anhang des Statistikdokuments ausgegeben.

Anmerkungen zum Nationalen Anhang für den Eurocode 2

Die nationalen Anwendungsdokumente (NAD) zu den aktuellen EC 2 (Bemessung und Brandfall) sind derzeit nur als Entwurf veröffentlicht. In pcae-Programmen können jedoch diese Festlegungen bereits berücksichtigt werden.

Die national festzulegenden Parameter (NDP) gliedern sich derzeit in zwei Abschnitte (Register):

- Teilsicherheitsfaktoren und Kombinationsbeiw. der Einwirkungen (EN 1990, Eurocode 0)
- Nachweisparameter für die Stahlbetonbemessung (EN 1992-1-1 und EN 1992-1-2, Eurocode 2)

Die Belegung dieser Parameter kann folgendermaßen beeinflusst werden:

In den Eurocodes sind für alle NDPs Empfehlungen vorgegeben. Diese sind in den pcae-Programmen hinterlegt und können bei Anwahl der 'EC-Standardparameter' in das Programm übernommen werden.

Diese Parameterliste ist nicht modifizierbar oder löschar, kann aber kopiert werden und ist dann offen für eine freie Wertbelegung.

Der neu generierten oder kopierten Parameterliste können ein Name und eine Landesfahne zugeordnet werden.

Die NDPs unterscheiden sich in ihrer Bedeutung, es gibt veränderbare Zahlenwerte und Funktionen mit einer Variablen x.

In einigen Fällen ist der NDP über eine Gleichung zu beschreiben (s.o.). Hier kann entweder die Variable x als Teil der Gleichung oder der Zahlenwert des NDPs selbst vorgegeben werden.

Zur Erläuterung des NDPs sind die Kapitelnr. im Eurocode und eine Kurzbeschreibung ggf. mit Formel angegeben.

Diese Parameterliste kann kopiert, gelöscht und in einer Datenbasis gespeichert werden, um in den anderen pcae-Programmen zur Verfügung zu stehen.
Der deutsche nationale Anhang zum EC 2 unterscheidet sich nicht nur in einigen Parametern vom EC-Standard, sondern hat auch in einigen Punkten weiterführende Bestimmungen und andere Formeln zur Berechnung der NDPs.

An diesen Stellen wird im Eigenschaftsblatt lediglich auf die entsprechende Stelle im NA verwiesen (s.o).
Diese Parameterliste kann weder kopiert und modifiziert noch gelöscht werden.
Literaturverzeichnis

Normen

- DIN 1055-100 Einwirkungen auf Tragwerke - Teil 100: Grundlagen der Tragwerksplanung, Sicherheitskonzept und Bemessungsregeln, Deutsches Institut für Normung e.V., Ausgabe März 2001
- DIN-Fachbericht 102: Betonbrücken, Deutsches Institut für Normung e.V., Ausgabe März 2009
- DIN EN 1990/NA, Nationaler Anhang - National festgelegte Parameter - Eurocode: Grundlagen der Tragwerksplanung; Deutsches Institut für Normung e.V., Ausgabe Dezember 2010
Schnittgrößentransformation bei Flächenträgern

▪ K. Holschemacher: Stahlbetonplatten – Neue Aspekte zur Bemessung, Konstruktion und Bauausführung, Bauwerk-Verlag GmbH, 2005

Biegebemessung

▪ Erläuterungen zu DIN 1045 Beton und Stahlbeton, Ausgabe 07.88, Heft 400, Deutscher Ausschuss für Stahlbeton, Beuth Verlag GmbH, 1989
▪ Erläuterungen zu DIN 1045-1, Heft 525, Deutscher Ausschuss für Stahlbeton, Beuth Verlag GmbH, 2003
▪ Berichtigung 1 zum DAfStB-Heft 525, Mai 2005
▪ Erläuterungen zu DIN 1045-1, Heft 525, Deutscher Ausschuss für Stahlbeton, 2. überarbeitete Auflage, Mai 2010
▪ F. Fingerloos, J. Hegger, K. Zilch: Eurocode 2 für Deutschland, Kommentierte Fassung, Beuth Verlag und Verlag Wilhelm Ernst & Sohn, 2012
▪ O. Wommelsdorff: Stahlbetonbau – Bemessung und Konstruktion, Teil 1, 10. Auflage, Werner Verlag, 2011

Schubbemessung

▪ E. Grasser: Bemessung für Biegung mit Längskraft, Schub und Torsion, Betonkalender Teil I, Verlag Ernst und Sohn, 1985
▪ Deutscher Beton- und Bautechnik-Verein e.V.: Beispiele zur Bemessung nach DIN 1045-1, Band 1: Hochbau, 2. Auflage, Ernst und Sohn Verlag, 2005
▪ D. Bertram: Erläuterungen zu DIN 4227 Spannbeton (Teil I, Abschnitt 12), Heft 320,
Deutscher Ausschuss für Stahlbeton, Beuth Verlag GmbH, 1989

▪ H. Friemann: Schub und Torsion in geraden Stäben, Werner-Verlag GmbH, Düsseldorf, 1983
▪ K. Zilch und A. Rogge: Bemessung von Stahlbeton- und Spannbetonbauteilen im Brücken- und Hochbau, Betonkalender 2004
▪ P. Mark: Ein Bemessungsansatz für zweiaxial durch Querkräfte beanspruchte Stahlbetonbalken mit Rechteckquerschnitt, Heft 5, Beton- und Stahlbetonbau 100 (2005)

Mitwirkende Plattenbreite

Rissnachweis

Verfahren nach Norm

▪ G. König & N. Viet Tue: Grundlagen und Bemessungshilfen für die Rissbreitenbeschränkung im Stahlbeton und Spannbeton, Heft 466, Deutscher Ausschuss für Stahlbeton, Beuth Verlag GmbH, 1996

Verfahren nach Schießl

▪ P. Schießl: Grundlagen der Neuregelung zur Beschränkung der Rissbreite, Heft 400, Deutscher Ausschuss für Stahlbeton, Beuth Verlag GmbH, 1989
▪ J. Bergfelder, J. Dittfach: Beschränkung der Rissbreite bei Ortbetonpfählen, Beton- und Stahlbetonbau 87, 1992

Verfahren nach Noakowski

▪ P. Noakowski: Verbundorientierte, kontinuierliche Theorie zur Ermittlung der Rissbreite, Beton- und Stahlbetonbau 80, 1985

Schwingbreiten-/Ermüdungsnachweis

▪ K. Zilch, G. ZeheMaier und C. Gläser: Ermüdungsnachweis bei Massivbrücken, Betonkalender 2004, Verlag Ernst & Sohn, 2004

Vereinfachter Brandschutznachweis für Druckglieder

▪ N.A. Fouad, A. Schwedler: Brandschutz-Bemessung auf einen Blick nach DIN 4102, Bauwerk-Verlag GmbH, 2006
▪ Musterliste der Technischen Baubestimmungen, Kap.3 Techn. Regeln zum Brandschutz, Betonkalender 2007, Teil 2

Brandbemessung nach DIN EN 1992-1-2 (EC 2 für Brandbeanspruchung)

▪ Cyllok, Michael & Achenbach, Marcus: Anwendung der Zonenmethode für brandbeanspruchte Stahlbetonstützen, Beton- und Stahlbetonbau 104, 2009

Literaturverzeichnis und Index
▪ K. Zilch, A. Müller, C. Reitmayer: Erweiterte Zonenmethode zur brandschutztechnischen Bemessung von Stahlbetonstützen, Bauingenieur Band 85, 2010
▪ Hildebrand, Joachim: Berechnung nichtlinearer Diffusionsvorgänge in Strukturen mit der Randelementmethode. VDI Verlag GmbH Düsseldorf, 1998
▪ Köhne, Heinrich: Digitale und analoge Lösungsmethoden der Wärmeleitungsgleichung. Westdeutscher Verlag Köln und Opladen, 1970

Druckzonendicke / Nachweis der Dichtigkeit
▪ DAFStb-Richtlinie: Betonbau beim Umgang mit wasser gefährdenden Stoffen, Deutscher Ausschuss für Stahlbeton, Ausgabe Oktober 2004
▪ Erläuterungen zur DAFStb-Richtlinie wasserundurchlässige Bauwerke, Heft 555, Deutscher Ausschuss für Stahlbeton, 2006

Verschiedenes
▪ Merkblätter des Deutschen Beton- und Bautechnik-Vereins e.V.: Beton und Betonstahl, Fassung Januar 2008

18 Index

Berechnungsverfahren vollplastisches 49
Betonfestigkeitsklassen 9
Betonstahl 10
Bewehrung statisch erforderliche 41
Bewehrungsanordnung 16
Biegebemessung 16
Brandbrand 18
ComBAR GFK 12
Dichtigkeitsnachweis 24
DIN 41022-22 18
Druckglieder umschnürte 59
Druckzonendicke 24
Elementdecke 12
Ermüdungsnachweis 50
Fuge Schubkraftübertragung 34
Gitterträger 12
Grundbewehrung 16
Gurtanschluss 33
Hauptdruckspannungsnachweis 38
Hydratationswärme 42
Kriechen 15
Kunststoff glasfaserverstärkter 12
Leichtbeton 9
Material, benutzerdefiniertes 11
Material, spezielles 12
Mindestbewehrung 16, 40
Mindestquerkraftbewehrung 33
Noakowski 47
Normalkraftbemessung 16
Plattenbreite mitwirkende 56
Querkraftbeanspruchung zweiachsige 32
Querschnitt statisch erforderlicher 16
Querschnitt unbewehrter 17
Querschnittsausnutzung 18
Rissnachweis 39
Robustheitsbewehrung 16
Rotation plastische 15
Schießl 47
Schubbemessung 26
Schwinden 15
Schwingnachweis 50
Sicherheitskonzept 12
Spannungsdehnungslinien 12
Spannungsnachweis 49
Torsionsbemessung 37
Tragfähigkeit bezogene 17
Verformungsverhalten plastisches 49
Wände 48
Wendelbewehrung 59

Literaturverzeichnis und Index