
4H-STUBS Version: 5/2018-1a

Stahlbetonstütze

Bemessung nach DIN EN 1992-1-1:2011-01 mit NA-Deutschland (DIN EN 1992-1-1/NA:2013-04)

Betonfestigkeitsklasse C20/25 Betonstahlsorte BSt 500 (A)

Lagersituation an Kopf- und Fußende

	Querk	raft	Mom	ent	
Lager	Cqy	Cqz	Смү	Cmz	
-	kN/m	kN/m	kNm/-	kNm/-	
Kopf					
Fuß	fest	fest	fest	fest	

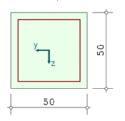
Grundwert der Längsbewehrung

 $A_{s1,0} = 49.26 \text{ cm}^2 \text{ (32 } \emptyset \text{ 14 gleichm. verteilt)}$

Bewehrungs führung

 $c_v = 3.0 \text{ cm}$

 $Q_w = 1.0$ cm


Achsabstand der Längsbewehrung

 $d_s = 4.7 \text{ cm}$

Maximal zulässiger Bewehrungsgrad

 $\max \rho_1 = 9.00 \%$

Querschnitt, Maßstab 1:25

1. Belastung

1.1. Einwirkungsstruktur

Auf der linken Seite sind die Einwirkungen und Lastfälle in einer Baumstruktur dargestellt. Auf der rechten Seite sind deren überlagerungsspezifische Eigenschaften angegeben.

verwendete Symbole:

Einwirkung Lastfall

1: ständige Lasten

1: Eigengewicht

2: Nutzlast

2: Nutzlasten

🗼 9: Wind

- 1 3: Wind-Y 4: Wind-Z

11: Sonderlasten

└ 🔃 5: Anprall

ständige Lasten

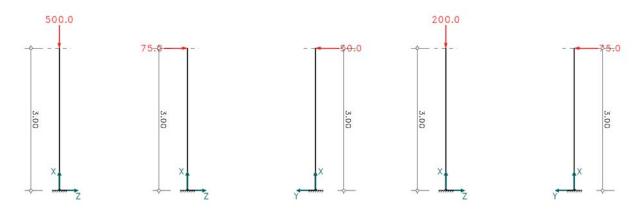
additiv

veränderliche Nutzlasten in Wohn-, Büroräumen

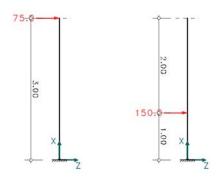
additiv

veränderliche Windlasten

alternativ in Gruppe A alternativ in Gruppe A


Sonderlast für außergewöhnliche Bemessungssituation

alternativ in Gruppe B


1.2. Tabelle der Lastbilder

Lastf.	Lastbild	Einleitung	Richtung	Wert	Einheit
1	Punktlast	Kopf	N	500.00	kN
2	Punktlast	Kopf	Qy	50.00	kN
			N	200.00	kN
			Qz	75.00	kN
3	Punktlast	Kopf	Qy	75.00	kN
4	Punktlast	Kopf	Qz	75.00	kN
5	Punktlast	h = 1.00 m	0,7	150.00	kN

Lastfall 1 (Bild 1) Lastfall 2 (Bild 2) Lastfall 2 (Bild 3) Lastfall 2 (Bild 4) Lastfall 3 (Bild 5)

Lastfall 4 (Bild 6) Lastfall 5 (Bild 7)

1.3. Eigengewicht der Stütze

Das Gewicht der Stütze wird mit 25.00 kN/m³ im Lastfall 1 berücksichtigt.

2. Stahlbetonbemessung - Nachweis der Tragfähigkeit nach Th.I.O

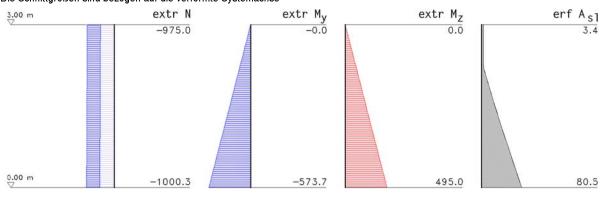
2.1. Nachweisparameter Biege- und Schubbemessung

Beton: C20/25

Verformungsberechnungen mit Kriechen ($\varphi_{\infty,t0} = 2.500$) Längsbewehrung: BSt 500, Mindestbewehrung für Stützen

Schubbewehrung BSt 500 ohne Schubmindestbewehrung Druckstrebenwinkel minimal

Teisicherheitsbeiwerte für Beton und Betonstahl:


- \circ ständig und vorübergehend: $\gamma_c = 1.50$, $\gamma_s = 1.15$
- ° aussergewöhnlich: $\gamma_c = 1.30$, $\gamma_s = 1.00$

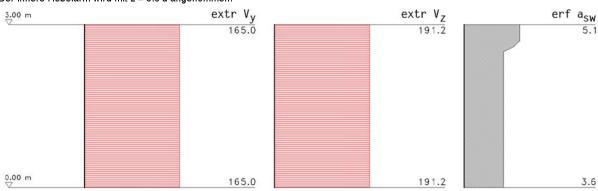
2.2. Faktorisierung der Lastfallkombinationen

LK	Bemessungssit.	Faktorisierung	LK	Bemessungssit.	Faktorisierung
1	ständig	Lf1	16	ständig	1.35 Lf1+1.5 Lf3
2	ständig	1.35 Lf1	17	ständig	Lf1+0.7-1.5-Lf2+1.5-Lf3
3	ständig	Lf1+1.5 Lf2	18	ständig	1.35 Lf1+0.7 1.5 Lf2+1.5 Lf3
4	ständig	1.35-Lf1+1.5-Lf2	19	ständig	Lf1+1.5 Lf4
5	ständig	Lf1+0.6 1.5 Lf3	20	ständig	1.35 Lf1+1.5 Lf4
6	ständig	1.35 Lf1+0.6 1.5 Lf3	21	ständig	Lf1+0.7 1.5 Lf2+1.5 Lf4
7	ständig	Lf1+1.5 Lf2+0.6 1.5 Lf3	22	ständig	1.35 Lf1+0.7 1.5 Lf2+1.5 Lf4
8	ständig	1.35 Lf1+1.5 Lf2+0.6 1.5 Lf3	23	außergew.	Lf1+Lf5
9	ständig	Lf1+0.6 1.5 Lf4	24	außergew.	Lf1+Lf5+0.5 Lf2
10	ständig	1.35 Lf1+0.6 1.5 Lf4	25	außergew.	Lf1+Lf5+0.3 Lf2
11	ständig	Lf1+1.5 Lf2+0.6 1.5 Lf4	26	außergew.	Lf1+Lf5+0.2 Lf3
12	ständig	1.35 Lf1+1.5 Lf2+0.6 1.5 Lf4	27	außergew.	Lf1+Lf5+0.3 Lf2+0.2 Lf3
13	ständig	Lf1+0.7 1.5 Lf2	28	außergew.	Lf1+Lf5+0.2 Lf4
14	ständig	1.35-Lf1+0.7-1.5-Lf2	29	außergew.	Lf1+Lf5+0.3 Lf2+0.2 Lf4
15	ständig	Lf1+1.5 Lf3			

2.3. Extremale Ergebnisse Biegebemessung

Die Schnittgrößen sind bezogen auf die verformte Systemachse

	N		Мy		Mz		
Х	Min	Max	Min	Max	Min	Max	erf As
m	kN	kΝ	kNm	kNm	kNm	kNm	Cm²
3.00	-975.00	-500.00	-0.00	0.00	0.00	0.00	3.36
0.00	-1000.31	-518.75	-573.75	0.00	0.00	495.00	80.47


Maßgebende Bewehrung:

Aus Lastkollektiv 12 an der Stelle x = 0.00 m, mit den Schnittgrößen: $N/M_y/M_z = -1000.31$ kN / -540.00 kNm / 225.00 kNm \Rightarrow erf $A_{s1} = 80.47$ cm²

 \Rightarrow Es ist eine zusätzliche Bewehrung von $\Delta A_{s1} = 31.21$ cm² erforderlich)

2.4. Extremale Ergebnisse Schubbemessung

Die Schnittgrößen sind bezogen auf die verformte Systemachse Der innere Hebelarm wird mit z = 0.9 d angenommen.

	V	1	V:		
Х	Min	Max	Min	Max	erf asw
m	kΝ	kΝ	kΝ	kΝ	cm²/m
3.00	0.00	165.00	-0.00	191.25	5.07
0.00	0.00	165.00	0.00	191.25	3.60

Maßgebende Bewehrung:

Aus Lastkollektiv 21 an der Stelle x = 2.70 m, mit den Schnittgrößen:

N = -711.87 kN $V_y/V_z = 52.50 \text{ kN}$ / 191.25 kN $M_y/M_z = -57.37 \text{ kNm}$ / 15.75 kNm

Bemessungswert $V_{Ed} = 191.25$ kN, Druckstebenwinkel $\Theta = 21.0^{\circ}$

Widerstandswerte $V_{Rd,ct}/V_{Rd,max} = 140.81 \text{ kN} / 474.22 \text{ kN}$, Ausnutzungsbereich AB = 2

Aus Lastkollektiv 21 an der Stelle x = 2.80 m, mit den Schnittgrößen:

N = -711.25 kN $V_y/V_z = 52.50 \text{ kN}$ / 191.25 kN $M_y/M_z = -38.25 \text{ kNm}$ / 10.50 kNm

Bemessungswert $V_{Ed} = 191.25$ kN, Druckstebenwinkel $\Theta = 21.0^{\circ}$

Widerstandswerte $V_{Rd,ct}/V_{Rd,max} = 149.62 \text{ kN} / 474.22 \text{ kN}$, Ausnutzungsbereich AB = 2

Aus Lastkollektiv 21 an der Stelle x = 2.90 m, mit den Schnittgrößen:

N = -710.62 kN $V_y/V_z = 52.50 \text{ kN}$ / 191.25 kN $M_y/M_z = -19.12 \text{ kNm}$ / 5.25 kNm

Bemessungswert $V_{Ed} = 191.25$ kN, Druckstebenwinkel $\Theta = 21.0^{\circ}$

Widerstandswerte $V_{Rd,ct}/V_{Rd,max} = 149.62 \text{ kN} / 474.22 \text{ kN}$, Ausnutzungsbereich AB = 2

Aus Lastkollektiv 21 an der Stelle x = 3.00 m, mit den Schnittgrößen:

N = -710.00 kN $V_y/V_z = 52.50 \text{ kN}$ / 191.25 kN $M_y/M_z = -0.00 \text{ kNm}$ / 0.00 kNm

Bemessungswert $V_{Ed} = 191.25$ kN, Druckstebenwinkel $\Theta = 21.0^{\circ}$

Widerstandswerte $V_{Rd,ct}/V_{Rd,max} = 149.62$ kN / 474.22 kN, Ausnutzungsbereich AB = 2

 \Rightarrow erf $a_{sw} = 5.07 \text{ cm}^2/\text{m}$

3. Knicksicherheit - Nachweis der Tragfähigkeit nach Th.II.O im Zustand 2

3.1. Berücksichtigung von baulichen Imperfektionen

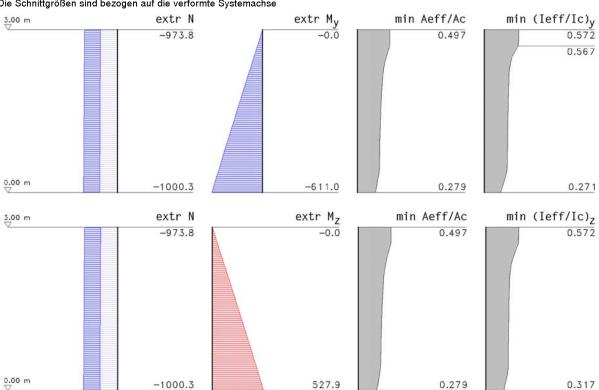
3.1.1. Imperfektionsfiguren

Je Achsrichtung wird eine Imperfektionsfigur entsprechend [2] bzw [1], Abschnitt 5.2. ermittelt. Ersatzlänge $\beta=l_0/l$ Knicklast $N_{Ki}=(\pi/l_0)^2\cdot El$

Richtung	Form	β	10	e	EI	Nĸi
		-	m	cm	MNm ²	MN
Υ	Schiefstellung	2.00	6.00	1.499	156.05	42.83
Z	Schiefstellung	2.00	6.00	1.499	156.05	42.83

 I_0 - Knicklänge e - max. Verformung EI - Biegesteifigkeit

3.1.2. Richtung der Imperfektion


 $N_{Ki,y}/N_{Ki,z} = 1.00 \Rightarrow immer in Richtung der Verformung aus planmäßiger Last.$

3.2. Faktorisierung der Lastfallkombinationen

0.2.	o.z. raktorioterang der Lastialikombinationen							
LK	Bemessungssit.	Faktorisierung						
1	ständig	Lf1+I _y						
2	ständig	1.35 Lf1+I _y						
3	ständig	Lf1+1.5 Lf2+0.56 I _y +0.83 I _z						
4	ständig	1.35 Lf1+1.5 Lf2+0.56 I _y +0.83 I _z						
5	ständig	Lf1+0.6 1.5 Lf3+I _y						
6	ständig	1.35-Lf1+0.6-1.5-Lf3+I _y						
7	ständig	Lf1+1.5 Lf2+0.6 1.5 Lf3+0.78 I _y +0.62 I _z						
8	ständig	1.35 Lf1+1.5 Lf2+0.6 1.5 Lf3+0.78 I _y +0.62 I _z						
9	ständig	Lf1+0.6·1.5·Lf4+I _Z						
10	ständig	1.35 Lf1+0.6 1.5 Lf4+Iz						
11	ständig	Lf1+1.5 Lf2+0.6 1.5 Lf4+0.39 I _y +0.92 I _z						
12	ständig	1.35 Lf1+1.5 Lf2+0.6 1.5 Lf4+0.39 I _y +0.92 I _z						
13	ständig	Lf1+0.7 · 1.5 · Lf2+0.56 · I _y +0.83 · I _z						
14	ständig	1.35 Lf1+0.7 1.5 Lf2+0.56 I _y +0.83 I _z						
15	ständig	Lf1+1.5 Lf3+I _y						
16	ständig	1.35 Lf1+1.5 Lf3+I _y						
17	ständig	Lf1+0.7 · 1.5 · Lf2+1.5 · Lf3+0.9 · I _y +0.43 · I _Z						
18	ständig	1.35 Lf1+0.7 1.5 Lf2+1.5 Lf3+0.9 I _y +0.43 I _z						
19	ständig	Lf1+1.5 Lf4+Iz						
20	ständig	1.35 Lf1+1.5 Lf4+Iz						
21	ständig	Lf1+0.7 1.5 Lf2+1.5 Lf4+0.27 I _y +0.96 I _z						
22	ständig	1.35 Lf1+0.7 1.5 Lf2+1.5 Lf4+0.27 I _y +0.96 I _z						
23	außergew.	Lf1+Lf5+I _z						
24	außergew.	Lf1+Lf5+0.5 Lf2+0.39 I _y +0.92 I _z						
25	außergew.	Lf1+Lf5+0.3 Lf2+0.32 I _y +0.95 I _z						
26	außergew.	Lf1+Lf5+0.2 Lf3+0.56 I _y +0.83 I _z						
27	außergew.	Lf1+Lf5+0.3 Lf2+0.2 Lf3+0.56 I _y +0.83 I _z						
28	außergew.	Lf1+Lf5+0.2 Lf4+Iz						
29	außergew.	Lf1+Lf5+0.3 Lf2+0.2 Lf4+0.24 I _y +0.97 I _z						

3.3. Extremale Ergebnisse Knicksicherheitsnachweis

Die Schnittgrößen sind bezogen auf die verformte Systemachse

	N		My		Mz	7	A _{eff} /A _c	Aeff /Ac Ieff,x /Ic Ieff,y /Ic		
Х	Min	Max	Min	Max	Min	Max	Min	Min	Min	
m	kN	kΝ	kNm	kNm	kNm	kNm	-	-	-	
3.00	-973.78	-499.16	-0.00	0.00	-0.00	0.00	0.497	0.572	0.572	
2.90	-974.63	-499.78	-20.73	0.00	-0.00	17.91	0.497	0.572	0.572	
0.00	-1000.31	-518.75	-611.04	0.00	-0.00	527.91	0.279	0.271	0.317	

 $[\]Rightarrow$ Für den Knicksicherheitsnachweis ist eine Bewehrung von $A_{S1} = 88.40$ cm² erforderlich. (d.h. zusätzliche erf. Bewehrung von $\Delta A_{s1} = 39.14$ cm² zur Grundbewehrung)

Maßgebende Querschnittsausnutzung im Zustand 2:

Lastkollektiv 12 an der Stelle x = 0.00 m, mit den Schnittgrößen: $N/M_y/M_z = -1000.31 \text{ kN} / -578.87 \text{ kNm} / 241.52 \text{ kNm}$ \Rightarrow max UQuerschnitt = 0.98

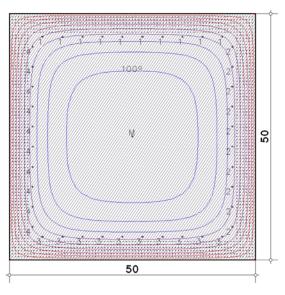
4. Brandschutz-Knicksicherheit

4.1. Nachweisparameter

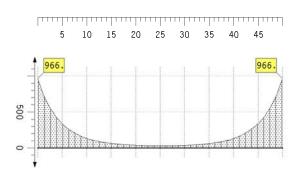
Temperaturermittlung (mittlere Genauigkeit)

Beflammung einer Stütze von unten, unter Normbrandbedingungen, Branddauer 90 min konvektiver Wärmeübergangskoeffizient $\alpha = 25.0 \text{ W/m}^2\text{K}$, Emissionswert für die Betonoberfläche $\epsilon = 0.70$ Feuchtegehalt des Betons 1.5 %, Rohdichte von Stahlbeton $\rho_c = 2400 \text{ kg/m}^3$ Normalbeton mit quarzhaltigen Zuschlägen, warmgewalzter Bewehrungsstahl, 10 Zonen Teisicherheitsbeiwerte für Beton und Betonstahl: $\gamma_c = 1.30$, $\gamma_s = 1.00$

4.2. Berücksichtigung von baulichen Imperfektionen


Siehe Abschn. 3.1. (Nachweis der Knicksicherheit) Mit einem Reduktionsfaktor für den Brandfall von $f_{red} = 0.10$

4.3. Faktorisierung der Lastfallkombinationen


LK	Bemessungssit.	Faktorisierung
1	ständig	Lf1+0.1 Iy
2	ständig	Lf1+0.5 Lf2+0.06 I _y +0.08 I _z
3	ständig	Lf1+0.3 Lf2+0.06 I _y +0.08 I _z
4	ständig	Lf1+0.2 Lf3+0.1 I _V
5	ständig	Lf1+0.3 Lf2+0.2 Lf3+0.08 Iy+0.06 Iz
6	ständig	Lf1+0.2 Lf4+0.1 Iz
7	ständig	Lf1+0.3 Lf2+0.2 Lf4+0.04 I _y +0.09 I _z

4.4. Temperaturprofil

Temperaturprofil (um 0° gedreht):

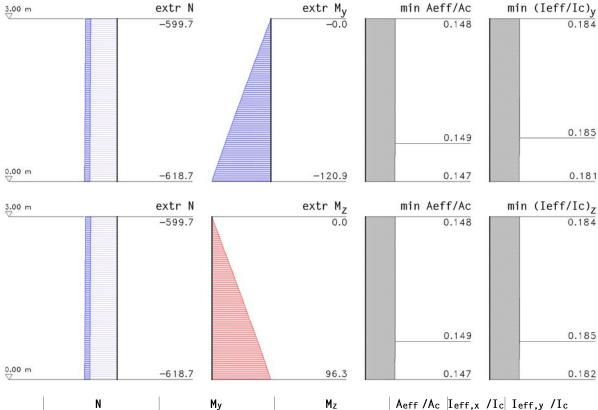
Horizontalschnitt durch das Temperaturprofil:

Temperatur in °C Max: 965.88°C Min: 30.42°C

Verfahren nach Zilch/Müller/Reitmayer (Bauingenieur, 06.10)

Temperatur im Beton: $\Theta_{c} = 100.0$ °C

Spannungsdehnungslinienparameter für den Beton nach EC2 (Brandfall), 3.2.2:


 $f_c = 20.00 \text{ MN/m}^2$ $\epsilon_c = -4.00\%$ $\epsilon_{cu} = -4.00\%$ $E_c = 29962.0 \text{ MN/m}^2$ mittlere Vordehnung $\epsilon_{\text{CV}} = 0.94\%$

Temperaturen in der Bewehrung:

 $\Theta_1 = 492.5^{\circ} 408.9^{\circ} 375.8^{\circ}$ 364.4° 361.3° 361.3° 364.4° 375.8° 408.9° 361.3° $\Theta_2 = 492.5^{\circ} 408.9^{\circ}$ 375.8° 364.4° 361.3° 364.4° 375.8° 408.9° 492.5° 361.3° $\Theta_3 = 492.5^{\circ} 408.9^{\circ}$ 375.8° 364.4° 361.3° 364.4° 375.8° 408.9° 492.5° 361.3° 364.4° = 492.5° 408.9° 375.8° 364.4° 361.3° 375.8° 408.9° 492.5°

4.5. Extremale Ergebnisse Brandschutz-Knicksicherheitsnachweis

Die Schnittgrößen sind bezogen auf die verformte Systemachse

	N	l	My	,	Mz	<u>.</u>	Aeff /Ac	Ieff,x /Ic	I _{eff,y} /I _c
х	Min	Max	Min	Max	Min	Max	Min	Min	Min
m	kN	kΝ	kNm	kNm	kNm	kNm	-	-	-
3.0	-599.66	-499.96	-0.00	0.00	-0.00	0.00	0.148	0.184	0.184
2.9	-600.29	-500.59	-4.15	0.00	0.00	3.30	0.148	0.184	0.184
0.0	- 618.75	-518.75	-120.87	-0.00	-0.00	96.30	0.147	0.181	0.182

⇒ Für den Brandschutz-Knicksicherheitsnachweis ist keine zusätzliche Bewehrung erforderlich. (erf As aus Nachweis der Knicksicherheit ist ausreichend)

Maßgebende Querschnittsausnutzung im Zustand 2:

Lastkollektiv 2 an der Stelle x = 0.00 m, mit den Schnittgrößen: $N/M_y/M_z = -618.75 \text{ kN } / -120.87 \text{ kNm } / 80.51 \text{ kNm}$ \Rightarrow max UQuerschnitt = 0.32

Stahlbetonbemessung - Nachweis der Gebrauchstauglichkeit

Spannungsdehnungslinie für den Beton nach [2] 3.1.5 (wirklichkeitsnah).

5.1. Rissnachweis

5.1.1. Nachweisparameter

 \emptyset der rissvert. Längsbewehrung: $d_{SO} = 14$ mm, $d_{SU} = 14$ mm

Verbund zwischen Bewehrung und Beton: gut

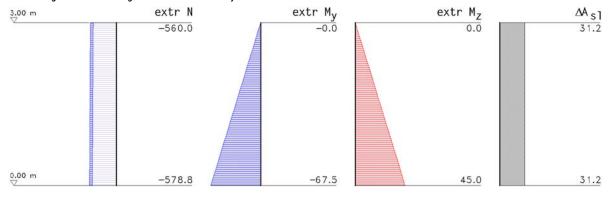
rechnerische Rissbreite: $w_{ko} = 0.30 \text{ mm}$, $w_{ku} = 0.30 \text{ mm}$

Mindestbewehrung: Erstrissbildung aus zentrischem Zwang

Beiwert zur Erfassung des Betrachtungszeitpunkt: $k_{zt} = 0.50$ (Zwang)

Berücksichtigung der Mindestzugfestigkeit des Betons (nur bei $k_{zt} \ge 1$)

Rissbildung aus Lastbeanspruchung: ja


Beiwert zur Erfassung des Betrachtungszeitpunkt: $k_{zt0} = 1.00$ (Last) Teisicherheitsbeiwerte für Beton und Betonstahl: $\gamma_c = 1.00$, $\gamma_s = 1.00$

5.1.2. Faktorisierung der Lastfallkombinationen

LK	Bemessungssit.	Faktorisierung
1	ständig	Lf1
2	ständig	Lf1+0.3 Lf2

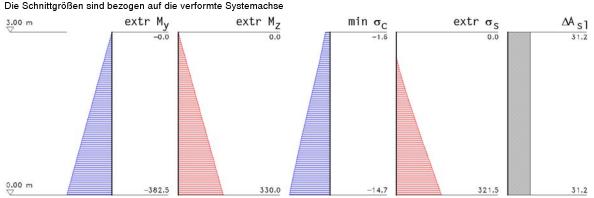
5.1.3. Extremale Ergebnisse Rissnachweis

Die Schnittgrößen sind bezogen auf die verformte Systemachse

	N		My		M_{Z}				
х	Min	Max	Min	Max	Min	Max	As1,Min	erf Ası	∆As1
m	kN	kΝ	kNm	kNm	kNm	kNm	Cm²	Cm²	Cm²
3.00	-560.00	-500.00	-0.00	0.00	0.00	0.00	9.44	80.47	31.21
0.00	-578.75	-518.75	-67.50	0.00	0.00	45.00	9.44	80.47	31.21

 \Rightarrow Für den Rissnachweis ist **keine zusätzliche Bewehrung** erforderlich. (erf A_S aus Biegebemessung ist ausreichend)

5.2. Spannungsnachweis


5.2.1. Nachweisparameter

zulässige Betondruckspannung zul $\sigma_c=fak_{\sigma c}\cdot f_{ck}=0.600\cdot f_{ck}=-15.0$ N/mm² zulässige Stahlzugspannung zul $\sigma_s=fak_{\sigma s}\cdot f_{yk}=0.800\cdot f_{yk}=400.0$ N/mm² Teisicherheitsbeiwerte für Beton und Betonstahl: $\gamma_c=1.00$, $\gamma_s=1.00$

5.2.2. Faktorisierung der Lastfallkombinationen

LK	Bemessungssit.	Faktorisierung	LK	Bemessungssit.	Faktorisierung	LK	Bemessungssit.	Faktorisierung
1	ständig	Lf1	5	ständig	Lf1+0.6 Lf4	9	ständig	Lf1+Lf3+0.7 Lf2
2	ständig	Lf1+Lf2	6	ständig	Lf1+Lf2+0.6 Lf4	10	ständig	Lf1+Lf4
3	ständig	Lf1+0.6 Lf3	7	ständig	Lf1+0.7 Lf2	11	ständig	Lf1+Lf4+0.7 Lf2
4	ständig	Lf1+Lf2+0.6 Lf3	8	ständig	Lf1+Lf3		'	'

5.2.3. Extremale Ergebnisse Spannungsnachweis

	N		My		M_{Z}		σ_{c}	σs		
Χ	Min	Max	Min	Max	Min	Max	Min	Min	Max	erf A _{s1}
m	kN	kΝ	kNm	kNm	kNm	kNm	MN/m²	MN/m^2	MN/m²	Cm²
3.00	-700.00	-500.00	-0.00	0.00	0.00	0.00	-1.62	0.00	0.00	80.47
2.90	-700.63	-500.63	-12.75	0.00	0.00	11.00	-2.03	0.00	0.00	80.47
0.00	-718.75	-518.75	-382.50	0.00	0.00	330.00	-14.65	0.00	321.46	80.47

 \Rightarrow Für den Spannungsnachweis ist **keine zusätzliche Bewehrung** erforderlich. (erf A_s aus Biegebemessung ist ausreichend)

Mindestlängsbewehrung

Entsprechend [2] Abschnitt 9.5.2.

statisch erforderliche Mindestbewehrung:

As1,min = $0.15 \cdot |NEd|$ / fyd = $0.15 \cdot 910.31/43.48 = 3.14 \text{ cm}^2$

konstruktiv erforderliche Mindestbewehrung:

As1,min = $8 \ \emptyset \ 12 = 9.05 \ cm^2$

 \Rightarrow Die Mindestbewehrung ist nicht maßgebend.

7. Zusammenfassung

Alle Nachweise konnten erfolgreich durchgeführt werden.

```
Maßgebende Längsbewehrung:
erf A_{s1} = 88.40 cm<sup>2</sup> bzw. erf \rho_1 = 3.536 % (aus Knicksicherheitsnachweis)
Zusätzlich erforderlich zur Grundbewehrung:
erf \Delta A_{s1} = 88.40 - 49.26 = 39.14 \text{ cm}^2
Querkraftbewehrung:
erf a_{sw} = 5.07 cm^2/m
```

Literatur und Normen:

- [1] DIN EN 1992-1-1/NA: Nationaler Anhang National festgelegte Parameter Eurocode 2, Teil 1-1, April 2013
- [2] DIN EN 1992-1-1: Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken, Teil 1-1, Januar 2011
- [3] DIN EN 1992-1-2: Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken, Teil 1-2, Dezember 2010 [4] DIN EN 1992-1-2/NA: Nationaler Anhang National festgelegte Parameter Eurocode 2, Teil 1-2, Dezember 2010
- [5] DIN EN 1992-1-2/NA/A1: Nationaler Anhang National festgelegte Parameter Eurocode 2, Teil 1-2, Änderung A1, September 2015