
Bemessung einer Auflagerkonsole EC 2 (1.11), NA: Deutschland

Eingabeprotokoll

Querschnitt (Einzelkonsole)

Träger: b = 30.0 cm, h = 80.0 cm, Achsabstand (Bemessung): d₁ = 6.0 cm Konsole: $l_k = 30.0$ cm, $h_k = 40.0$ cm, Achsabstand (Bemessung): $d_{1k} = 7.0$ cm

Lagerplatte: $l_p = 15.0$ cm, $b_p = 20.0$ cm

Materialkennwerte

Beton: C40/50, Bewehrung: B500A

Materialsicherheitsbeiwerte

Bemessungssituation: Grundkombination

Tragfähigkeit: Beton $\gamma_c = 1.50$, Bewehrung $\gamma_s = 1.15$

Parameter

Lastangriff bei $\Delta a = 16.5$ cm, $\Delta h = 5.0$ cm Bemessungsverfahren n. EC 2-1-1, 6.5 Auflagerkonsole, Lasteinleitung mit Variante 1

Lagerpressung: Lagerfuge trocken

aus Schubbemessung des Trägers: Druckstrebenwinkel ⊕ = 18.4° (minimal)

Bemessungsgrößen (GZT) Lk 1: $A_{Ed} = 250.0 \text{ kN}$

1.1. Dauerhaftigkeit und Betondeckung

vertikal: Mindestfestigkeitsklasse, Betondeckung

infolge Bewehrungskorrosion XC1 \Rightarrow C16/20, c_{nom} = 20 mm, c_{nom,1} = 24 mm \Rightarrow c_{nom} = 24 mm < c_v = 42 mm \Rightarrow c_{nom} = 24 mm \Rightarrow c_{nom} = 2 Mindestbetongüte C16/20 mit $f_{ck} = 16.0 \text{ N/mm}^2 < \text{vorh } f_{ck} = 40.0 \text{ N/mm}^2 \text{ ok}$

horizontal: Mindestfestigkeitsklasse, Betondeckung

infolge Bewehrungskorrosion XC1 \Rightarrow C16/20, c_{nom} = 20 mm, c_{nom,1} = 24 mm \Rightarrow c_{nom} = 24 mm < c_v = 25 mm ok Mindestbetongüte C16/20 mit fck = 16.0 N/mm² < vorh fck = 40.0 N/mm² ok

2. Hinweis

Allgemeine Bewehrungsregeln sind nicht berücksichtigt.

Bemessung

3.1. Lk 1

Hinweis (trockene Lagerfuge): $H < 0.2 \cdot A \Rightarrow H = 0.2 \cdot A = 50.00 \text{ kN}$!!

Bemessungsgrößen: $A = A_V = 250.00 \text{ kN } (\Delta a = 16.5 \text{ cm}), H = A_h = 50.00 \text{ kN } (\Delta h = 5.0 \text{ cm})$

Lagerpressung (trockene Lagerfuge): σ_P = 8.33 N/mm² < σ_{Rd,max} = 9.07 N/mm² ok

Zugbewehrung horizontal: $Z_{A+H} = 333.83 \text{ kN} \implies \text{erf } A_{s,h} = 7.68 \text{ cm}^2$

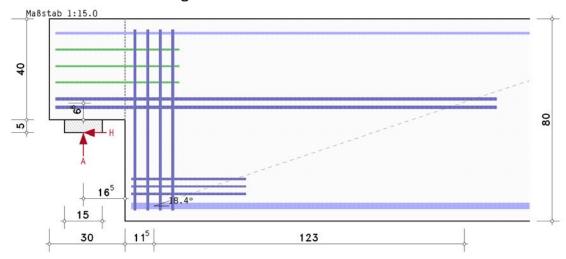
 $Z_V = 250.00 \text{ kN} \implies \text{erf A}_{s,v} = 5.75 \text{ cm}^2$ vertikal:

Verankerung von A_{s,h} bei z₃ = 123.0 cm für ⊕ = 18.4°

Nachweis der Druckstrebe: x = 6.96 cm $< zul x = 0.4 \cdot d = 12.0$ cm ok

Spaltzugbewehrung: horizontale Bügelbewehrung (Asb, v konstr.) für ∆a/h = 0.21 ≤ 0.5 (gedrungene Konsole)

 \Rightarrow erf A_{sb,h} = 0.3·A_{s,h} = 2.30 cm²


Verankerung der Feldbewehrung: $Z_{h1} = 375.00 \text{ kN} \implies \text{erf As,h1} = 8.63 \text{ cm}^2$

Gesamt: $A_{s,h} = 7.68 \text{ cm}^2$, $A_{s,v} = 5.75 \text{ cm}^2$, $A_{s,h1} = 8.63 \text{ cm}^2$, $A_{sb,h} = 2.30 \text{ cm}^2$ ($\Sigma A_{st} = 13.43 \text{ cm}^2$)

4. Endergebnis

maximale Bewehrung: As,h = 7.68 cm², As,v = 5.75 cm², As,h1 = 8.63 cm², Asb,h = 2.30 cm²

Gewählte Bewehrung

Berechnung der erforderlichen Verankerungslängen: Verbundbedingungen gut

Betondeckung (Verlegemaß) $c_{V,V} = 4.2 \text{ cm} > c_{nom,V} = 2.40 \text{ cm} \text{ ok}$

Betondeckung (Verlegemaß) $c_{V,h} = 2.5 \text{ cm} > c_{nom,h} = 2.40 \text{ cm}$ ok

Feldbewehrung oben Stabstahl, 2Ø10, vorh Aso = 1.57 cm²

Feldbewehrung unten Stabstahl, 4Ø25, vorh Asu = 19.63 cm²

Verankerungslänge: erf l_V = 32.4 cm > vorh l_V = 17.0 cm ⇒ Verankerung A_{s,h1} erf. !!

1. Lage:2Ø14, $D_{min} = 5.6$ cm, vorh $A_{s,h} = 6.16$ cm² Hauptzugbewehrung

(Schlaufen, 2-schn.) 2. Lage: 2%14, $D_{min} = 5.6$ cm, vorh $A_{s,h} = 6.16$ cm², $d_v = 3.4$ cm

vorh $A_{s,h} = 12.32 \text{ cm}^2 > \text{erf } A_{s,h} = 7.68 \text{ cm}^2 \text{ ok}$

Verankerungslängen: Konsole erf $l_V = 12.0$ cm < vorh $l_V = 16.1$ cm ok

Träger I_V = 25.8 cm

Spaltzugbewehrung horizontal 3Ø8 (Schlaufen, 2-schn.), vorh Asb,h = 3.02 cm² > erf Asb,h = 2.30 cm² ok

Verankerungslänge: l_v = 18.0 cm ⇒ Länge der Schlaufen: l_s = 49.0 cm

Vertikalbewehrung $4\emptyset10$ (Bügel, 2-schn.), vorh $A_{s,v} = 6.28 \text{ cm}^2 > \text{erf } A_{s,v} = 5.75 \text{ cm}^2 \text{ ok}$ Verankerung horiz. 3Ø10 (Schlaufen, 4-schn.), vorh $A_{s,h1} = 9.42$ cm² > erf $A_{s,h1} = 8.63$ cm² ok

Verankerungslänge: erf $l_v = 13.5$ cm < vorh $l_v = 17.0$ cm ok

Übergreifungslänge l_v = 45.4 cm

vorh $d_{1k} = 6.60$ cm < clc $d_{1k} = 7.0$ cm ok mit Mindest-Stababstand je Lage Achsabstand

vorh $e_1 = 11.50$ cm < clc $e_1 = 12.0$ cm ok mit Stababstand $d_h = 5.00$ cm > min $d_h = 3.0$ cm okAchsabstand

Tragfähigkeit gewährleistet

6. Vorschriften

EN 1990, Eurocode 0: Grundlagen der Tragwerksplanung;

Deutsche Fassung EN 1990:2002 + A1:2005 + A1:2005/AC:2010, Ausgabe Dezember 2010

EN 1990/NA, Nationaler Anhang zur EN 1990, Ausgabe Dezember 2010

EN 1992-1-1, Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetonbauteilen -

Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau;

Deutsche Fassung EN 1992-1-1:2004 + AC:2010, Ausgabe Januar 2011

EN 1992-1-1/NA, Nationaler Anhang zur EN 1992-1-1, Ausgabe April 2013

Frank Fingerloos, Gerhard Stenzel: Konstruktion und Bemessung von Details nach DIN 1045, Betonkalender 2007 T.2, Verlag Ernst & Sohn, 2007