POS. 19: T-BEAM (REINFORCED CONCRETE 1-ACHS.)

bending and shear design calculation (EC 2 (1.11), NA: Deutschland)

uniaxial bending with/without axial force (4H-BETON: version 11/2007-4)

detailing of reinforcement
preferably in tension face ($\varepsilon_{\text{slu}} = 25.00\%$)

min./max. reinforcement
$\min A_s$ (9.2.1.1, 9.5.2), $\max \rho_0 = 8.00\%$

initial reinforcement
$A_{s00} = 0.00 \text{ cm}^2$, $A_{su} = 0.00 \text{ cm}^2$

$A_{s050} = 0.00 \text{ cm}^2/m$

verifications in ultimate limit states are executed with stress-strain relation for concrete acc. to 3.1.7 (figure 3.3)

with $f_{cd} = \frac{f_{ck}}{\gamma_c} = 14.2 \text{ MN/m}^2$ and reinforcement stress-strain relation acc. to 3.2.7 (fig. 3.8) with $f_y = f_{yk}/\gamma_y = 434.8 \text{ MN/m}^2$

and $f_t = f_{tk}/\gamma_t = 456.5 \text{ MN/m}^2$!

verifications in serviceability limit states are executed with stress-strain relation for concrete acc. to 3.1.5 (figure 3.2)

with $f_c = f_{ck} = 33.0 \text{ MN/m}^2$ and reinforcement stress-strain relation acc. to 3.2.7 (fig. 3.8) with $f_y = f_{yk}$, $f_t = 525.0 \text{ MN/m}^2$ and $\gamma_y = 25\%$!

design calculation values and minimum reinforcement areas (EC 2, 6.1)

<table>
<thead>
<tr>
<th>γ</th>
<th>N_{Ed}</th>
<th>M_{Ed}</th>
<th>ε_{clu}</th>
<th>ε_{slu}</th>
<th>ε_{clu}</th>
<th>ε_{clu}</th>
<th>ε_{clu}</th>
<th>ζ</th>
<th>ζ</th>
<th>d</th>
<th>A_{s0}</th>
<th>A_{su}</th>
<th>note</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>---</td>
<td>-125.00</td>
<td>500.00</td>
<td>-2.29</td>
<td>-0.78</td>
<td>25.00</td>
<td>27.63</td>
<td>0.08</td>
<td>0.97</td>
<td>68.4</td>
<td>---</td>
<td>15.61</td>
<td></td>
</tr>
</tbody>
</table>

with $\varepsilon_{\text{clu}} = -3.50\%$, concr. strain in state of failure (fiber 2), $\varepsilon_{\text{slu}} = 25.00\%$, reinforcement strain in state of failure (fiber 1)

$X = \zeta d$: height of concr. compr. zone, $z - \zeta d$: lever arm of internal forces, $d = h - d$: effective depth

9) minimum reinforcement acc. to 9.2.1.1

\Rightarrow longitudinal reinforcement: $\min A_{s0} = 0.0 \text{ cm}^2$, $\min A_{su} = 15.6 \text{ cm}^2$

shear design calculation (EC 2, 6.2 + 6.3)

minimum reinforcement acc. to 9.2.2(5), material quality as flexural reinf,

$z = 0.9 d$ (6.2.3(1)), $c_v = 3.0 \text{ cm}$, $D =$ compression reinf.

angle of reinforcement $\alpha = 90^0, \gamma_a = 90^0$

the minimum value of V_{mdc} is limited acc. to design code ($V_{\text{mdc}} \geq \min V_{\text{mdc}}$).

only web design; connection of compression/tension boom to be designed separately.

design calculation of shear force (EC 2, 6.2)

<table>
<thead>
<tr>
<th>V_{Ed}</th>
<th>p_1</th>
<th>z</th>
<th>V_{mdc}</th>
<th>θ</th>
<th>$\cot \theta$</th>
<th>V_{max}</th>
<th>A_B</th>
<th>a_1</th>
<th>$a_{s,bw}$</th>
<th> note</th>
</tr>
</thead>
</table>
| 1 | 50.00 | 0.91 | 61.6 | 88.41 | 18.4 | 3.00 | 490.56 | 1 | 92.3 | 2.05 | $\text{minimum reinforcement}$

with p_1 ratio of longit. reinf. related to static height, z: decisive inner lever arm

V_{mdc}: design value of shear resistance without shear reinforcement, θ: angle of compr. strut,

V_{mdc}: design value of maximal shear resistance, a_1: shift rule

A_B: range of utilization see NA/DE

\Rightarrow shear reinforcement: $\min a_{s,bw} = 2.05 \text{ cm}^2/m$

crack control (EC 2, 7.3: 7.3.2 minimum reinforcement, 7.3.3 without direct calculation)

cracking in bending restraint (intrinsically imposed)

minimum reinforcement:

cof. - stress distribution $k_c = 0.55 / 0.26$

cof. - selfequil. stresses $k = 0.80$

concr. tens. str. (restr.) $f_{ct,eff} = 2.56 \text{ N/mm}^2$

tension zones $A_{ct,0} = 6.2 \text{ dm}^2$, $A_{ct,1} = 12.5 \text{ dm}^2$

$A_{st,0} = 1.6 \text{ cm}^2$, $A_{st,1} = 6.6 \text{ cm}^2$

crack control:

concr. tens. strength (load) $f_{ct,eff} = f_{ct} = 2.56 \text{ N/mm}^2$

effective slab width $b_{eff} = 36.4 \text{ cm}$

$\sigma_0 = 0.0 \text{ N/mm}^2$, $\sigma_{su} = 284.9 \text{ N/mm}^2$
fatigue design (EC 2, 6.8.5 + 6.8.7(1))
for steel: \(U_{si} = \gamma_f,_{fat} \gamma_{cd,_{fat}} \Delta \sigma_{s,_{equ}} \leq U_{s2} = \Delta \sigma_{sk} (N^\ast) / \gamma_{s,_{fat}} = 152.17 \text{ N/mm}^2 \)
damage equivalent stress range \(\Delta \sigma_{s,_{equ}} = \sigma_{0,0} - \sigma_{U,_{s}} \)
partial safety factors \(\gamma_f,_{fat} = 1.00, \gamma_{cd,_{fat}} = 1.00, \gamma_{s,_{fat}} = 1.15 \)
allowable stress range \(\Delta \sigma_{sk} (N^\ast) = 175.0 \text{ N/mm}^2 \)
shear force: \(\Delta \sigma_{sk} (N^\ast) = 107.0 \text{ N/mm}^2 \Rightarrow U_{s2} = \Delta \sigma_{sk} (N^\ast) / \gamma_{s,_{fat}} = 93.04 \text{ N/mm}^2 \)
for conc.: \(U_{ci} = \left[f_{cd,_{max,_{equ}}} / f_{cd,_{fat}} + 0.43 \sqrt{1 - \sigma_{cd,_{min,_{equ}}} / \sigma_{cd,_{max,_{equ}}}} \right] \leq 1.0 \)
design value of compression strength \(f_{cd,_{fat}} = 15.00 \text{ N/mm}^2 \) at \(t_0 = 28 \text{ d} \)
material safety \(\gamma_c,_{fat} = 1.50 \)
load: \(N_{s1} = 0.00 \text{ kN} \quad M_{s1} = 500.00 \text{ kNm} \quad V_{s1} = 50.00 \text{ kN} \)
\(N_{s2} = 10.00 \text{ kN} \quad M_{s2} = 355.00 \text{ kNm} \quad V_{s2} = 45.00 \text{ kN} \)
reinforcement (initial state): \(A_{So} = 1.56 \text{ cm}^2 \quad A_{Su} = 15.61 \text{ cm}^2 \quad a_{s,_{bov}} = 2.05 \text{ cm}^2 / \text{m} \)

fatigue design for steel:

- concrete fatigue design:
 \(\sigma_{cd,_{min,_{equ}}} = 7.90 \text{ N/mm}^2 \)
- \(\Delta \sigma_{so,_{equ}} = -31.15 - 45.08 = 13.93 \text{ N/mm}^2 \)
- \(\Delta \sigma_{so,_{equ}} = 490.71 - 350.17 = 140.54 \text{ N/mm}^2 \)
- \(U_{ci} = 0.96 < 1.00 \Rightarrow \text{verification executed!} \)

- end state:
 \(\sigma_{cd,_{min,_{equ}}} = 0.97 \text{ N/mm}^2 \)
 \(\sigma_{cd,_{max,_{equ}}} = 1.08 \text{ N/mm}^2 \)
 \(U_{ci} = 0.10 < 0.54 \Rightarrow \text{verification executed!} \)

\(\Rightarrow \text{no additional fatigue reinforcement!} \)

limitation of steel tension and concrete compression stresses (EC 2, 7.2)
- permitted tensile stress of rein. \(\sigma_{O} = 0.80 \cdot f_{ck} = 400.0 \text{ N/mm}^2 \)
- permitted concrete compression stress \(\sigma_{c} = 0.60 \cdot f_{ck} = -15.0 \text{ N/mm}^2 \)
- stress forces and moments: \(N_{s} = 0.00 \text{ kN} \quad M_{s} = 500.00 \text{ kNm} \)
- reinforcement (initial state): \(A_{So} = 1.56 \text{ cm}^2 \quad A_{Su} = 15.61 \text{ cm}^2 \)

maximal reinforcement tensile stresses \(\min \text{max} \text{al concrete compression stress} \)
- initial state:
 \(\sigma_{so} = -45.1 \text{ N/mm}^2 \quad \sigma_{su} = 490.7 \text{ N/mm}^2 \quad \sigma_{s} = -11.0 \text{ N/mm}^2 \)
- end state:
 \(\sigma_{so} = -43.6 \text{ N/mm}^2 < 400.0 \text{ N/mm}^2 \quad \sigma_{s} = -10.1 \text{ N/mm}^2 > -15.0 \text{ N/mm}^2 \)
 \(\sigma_{su} = 399.0 \text{ N/mm}^2 < 400.0 \text{ N/mm}^2 \)
 \(\Rightarrow \Delta A_{su} = 3.7 \text{ cm}^2 \)

\(\Rightarrow \text{incl. stress reinforcement:} \quad \min A_{So} = 1.6 \text{ cm}^2 \quad \min A_{Su} = 19.3 \text{ cm}^2 \)

total reinc.:
- total \(A_{So} = 1.6 \text{ cm}^2 \quad A_{Su} = 19.3 \text{ cm}^2 \)
- total \(a_{s,_{bov}} = 2.05 \text{ cm}^2 / \text{m} \)

degree of utilization: \(U = 0.82 \)

selected:
- Longitudinal, top: \(2 \ 0 \ 10 = 1.6 \text{ cm}^2 \geq 1.6 \text{ cm}^2 \)
- bottom: \(4 \ \phi \ 20 + 2 \ \phi \ 20 = 18.8 \text{ cm}^2 < 19.3 \text{ cm}^2 \)
- stirrups: 2-shear: \(\phi / 8 \ 30 = 3.35 \text{ cm}^2 / \text{m} > 2.05 \text{ cm}^2 / \text{m} \)

anchorage lengths top \((A_{sb,_{min}} = 0.00 \text{ cm}^2 \quad A_{s,_{ext}} = 1.57 \text{ cm}^2) \):
- basic size of anchorage length, \(b_{min} \text{ minimum value of anchorage length, } b_{ext} \text{ intermediate support with hooks:} \)
 \(l_{b} = 57.7 \text{ cm} \quad l_{b,_{min}} = 12.1 \text{ cm} \quad l_{b,_{net}} = 12.1 \text{ cm} \)
 \(l_{b,_{dir}} = 8.1 \text{ cm} \quad l_{b,_{ind}} = 12.1 \text{ cm} \quad l_{b,_{int}} = 6.0 \text{ cm} \)
- without: \(l_{b} = 57.7 \text{ cm} \quad l_{b,_{min}} = 17.3 \text{ cm} \quad l_{b,_{net}} = 17.3 \text{ cm} \)
 \(l_{b,_{dir}} = 11.5 \text{ cm} \quad l_{b,_{ind}} = 17.3 \text{ cm} \quad l_{b,_{int}} = 6.0 \text{ cm} \)

anchorage lengths bottom \((A_{sb,_{min}} = 15.61 \text{ cm}^2 \quad A_{s,_{ext}} = 18.85 \text{ cm}^2) \):
reinforcement drawing:

scale 1 : 20

```
1.45

75

10

25
```

cross-section data

- Gross area of concrete: $A_c = 30.8$ dm2
- Second moment of area: $I_{zz} = 166.2$ dm4
- Moment of resistance: $W_{zz} = 33.1$ dm3
- Distance of centre of gravity from upper edge: $z_i = 24.8$ cm
- Total area of longitudinal reinforcement: $\Sigma(\text{min } A_s) = 20.9$ cm2 \Rightarrow $\rho_s = 0.68\% < 8.00\%$

material properties for design calculation

<table>
<thead>
<tr>
<th>Concrete</th>
<th>f_{ck} (MN/m2)</th>
<th>α</th>
<th>$\varepsilon_{c(2)}$</th>
<th>$\varepsilon_{c(2u)}$</th>
<th>ε_c</th>
<th>E_c (MN/m2)</th>
<th>f_{cm} (MN/m2)</th>
<th>Reinforcement</th>
</tr>
</thead>
<tbody>
<tr>
<td>C25/30</td>
<td>25.0</td>
<td>0.850</td>
<td>-2.00</td>
<td>-3.50</td>
<td>2.00</td>
<td>31475.8</td>
<td>2.565</td>
<td>f_y</td>
</tr>
</tbody>
</table>

- Design value of compression strength $f_{cd} = f_{ck} \cdot \alpha / \gamma_c$
- Strain at reaching the maximum strength $\varepsilon_{c(2)}$, ult. compr. strain $\varepsilon_{c(2u)}$
- Conc. comp. stress $\sigma_c = f_{cd} (1+ (\gamma_c/\alpha))$ for $0 \leq \varepsilon_c \leq \varepsilon_{c(2)}$ and $\sigma_c = f_{cd}$ for $\varepsilon_c < \varepsilon_{c(2)}$
- Modulus of elasticity E_{cm}, mean value of axial tensile strength f_{cm}

- Design yield strength $f_{yd} = f_{y} / \gamma_y$
- Design tensile strength $f_{ts} = f_{t} / \gamma_y$
- Ult. tensile strain ε_{su}, modulus of elasticity E_s