POS. 22: DOPPEL-T (REINFORCED CONCRETE 1-Achs.)

bending and shear design calculation (EC 2 (1.11), NA: Deutschland)
uniaxial bending with/without axial force (4H-BETON version: 11/2007-41)

I-section

- \(h = 100.0 \) cm, \(b = 40.0 \) cm
- \(h_0 = 20.0 \) cm, \(b_0 = 160.0 \) cm
- \(h_u = 30.0 \) cm, \(b_u = 60.0 \) cm

edge distances of longit. rein.

- \(d_0 = 3.8 \) cm, \(d_u = 6.6 \) cm

material

- C25/30
- B500 (A)
- \(\gamma_s = 1.15 \), \(\gamma_c = 1.50 \)
- exposure class X0

detailing of reinforcement

- limitation of compression zone height to \(\lim \eta = 0.617 \)

min./max. reinforcement

- \(A_{so} \) (9.2.1.1, 9.5.2), \(\max \rho_s = 8.00\% \)

initial reinforcement

- \(A_{so} = 0.00 \) cm², \(A_{su} = 0.00 \) cm²
- \(A_{so} = 0.00 \) cm²/m

verifications in ultimate limit states are executed with stress-strain relation for concrete acc. to 3.1.7 (figure 3.3)
with \(f_{cd} = \frac{f_{cd}}{\gamma_c} = 14.2 \) MN/m² and reinforcement stress-strain relation acc. to 3.2.7 (fig. 3.8) with \(f_{yy} = f_{yk} / \gamma_y = 434.8 \) MN/m²
and \(f_{td} = f_{tk} / \gamma_k = 455.6 \) MN/m²

verifications in serviceability limit states are executed with stress-strain relation for concrete acc. to 3.1.5 (figure 3.2)
with \(f_{c} = f_{cm} = 33.0 \) MN/m² and reinforcement stress-strain relation acc. to 3.2.7 (figure 3.8) with \(f_{yy} = f_{yk} / \gamma_y = 629.0 \) MN/m² and \(\omega_k = 25\% \)

design calculation values and minimum reinforcement areas (EC 2, 6.1)

<table>
<thead>
<tr>
<th>(\gamma)</th>
<th>(N_{Ed})</th>
<th>(M_{Ed})</th>
<th>(\varepsilon_{2u})</th>
<th>(\varepsilon_{2u})</th>
<th>(\varepsilon_{1u})</th>
<th>(\xi)</th>
<th>(\zeta)</th>
<th>(d)</th>
<th>(A_{so})</th>
<th>(A_{su})</th>
<th>note</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100.00</td>
<td>1500.00</td>
<td>-2.78</td>
<td>-1.65</td>
<td>25.00</td>
<td>26.96</td>
<td>0.10</td>
<td>0.96</td>
<td>93.4</td>
<td>---</td>
<td>37.51</td>
<td>305.43</td>
<td>-0.99</td>
<td>0.07</td>
<td>25.00</td>
</tr>
</tbody>
</table>

\(\omega_k = 3.50\% \); concr. strain in state of failure (fibre 2), \(\omega_{sy} = 25\% \); reinforcement strain in state of failure (fibre 1)

- \(x - \xi \): height of concr. comp. zone, \(z - \zeta \): lever arm of internal forces, \(d - h - d \): effective depth

9) minimum reinforcement acc. to 9.2.1.1

\[\Rightarrow \text{longitudinal reinforcement: } \min A_{so} = 0.0 \text{ cm}^2, \min A_{su} = 37.5 \text{ cm}^2 \]

shear and bond design calculation (EC 2, 6.2 + 6.3)

minimum reinforcement acc. to 9.2.2.5), material quality as flexural reinfor.
- \(z = 0.9 \) d (6.2.3.1)), \(c_{v,0} = 3.0 \) cm, \(D \): compression reinforc.
- angle of reinforcement \(\alpha = 90.0^\circ \), angle of compr. strut \(\theta_{ew} = 0^\circ \)
- tension reinforcement \(A_{s1, ew} = 8.0 \) cm²
the minimum value of \(V_{dct} \) is limited acc. to design code (\(V_{dct} \geq V_{dct} \)).
only web design; connection of compression/tension boom has to be designed separately.

design calculation of shear force (EC 2, 6.2)

<table>
<thead>
<tr>
<th>(V_{Ed})</th>
<th>(\rho_1)</th>
<th>(\gamma)</th>
<th>(V_{dct})</th>
<th>(\theta)</th>
<th>(\cot \theta)</th>
<th>(V_{dct})</th>
<th>(A_B)</th>
<th>(\rho_s, \rho_v)</th>
<th>(a_s, b_v)</th>
<th>(\text{note})</th>
</tr>
</thead>
</table>
| 1 | 50.00 | 0.21 | 84.1 | 104.46 | 18.4 | 3.00 | 1071.76 | 1 | 126.1 | 3.28 | minimum reinforcement

\(\rho \): ratio of longit. rein. related to static height, \(\gamma \): decisive inner lever arm
\(V_{dct} \): design value of shear resistance without shear reinforcement, \(\alpha \): angle of compr. strut,
\(V_{dct} \): design value of maximal shear resistance, \(a_B \): shift rule
\(A_B \): range of utilization see NA-DE

shear at the interface between concrete cast at different times (EC 2, 6.2.5)

design value of the shear stress in the interface \(\tau_{Ed,i} = \beta \cdot V_{Ed} / (b_1 z) \) with \(\beta = 1.00 \),
width of contact surface \(b_1 = 40.00 \) cm (in web), angle of compr. strut \(\theta_1 = 45^\circ \),
normal stress perpendicular to interface \(\sigma_n = 0 \)
interaxe stress from dynamic load
interface surface condition: smooth \((\Rightarrow c = 0.10, \mu = 0.6) \)
<table>
<thead>
<tr>
<th>(v_E \cdot J)</th>
<th>(V_{Ku} \cdot J)</th>
<th>(Z_J)</th>
<th>(V_{Ku} \cdot \max \cdot J)</th>
<th>(a_s \cdot b_o)</th>
<th>note</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>59.48</td>
<td>0.00</td>
<td>84.1</td>
<td>566.67</td>
<td>1.90</td>
</tr>
</tbody>
</table>

analogous to shear analysis: \(V_{Ku} \cdot J \) \(= \) \(c_{ef} \cdot d + \mu \cdot c_{su} \cdot v_{Ku,\max} \cdot J \) \(= 0.5 \cdot v_{E} \cdot J \) (reduction of strength)
design value of concrete tensile strength: \(f_{\text{ctd}} = 1.20 \text{ N/mm}^2 \)

\[\Rightarrow \text{shear reinforcement: } \min a_s, b_o = 3.28 \text{ cm}^2 / \text{m} = \max (a_s, b_o, V, a_s, b_o) \]

crack control (EC 2, 7.3.7: 7.3.2 minimum reinforcement, 7.3.4 crack control)
cracking in bending restraint (intrinsically imposed) **minimum reinforcement**
coeff. - stress distribution \(k_c = 0.53 / 0.35 \)
coeff. - self-equiv. stresses \(k = 0.74 \)
concr. tens. str. (restr.) \(f_{\text{ct}, \text{eff}} = 2.56 \text{ N/mm}^2 \)
tension zones \(a_{cto} = 16.6 \text{ dm}^2 \) \(a_{ctu} = 25.7 \text{ dm}^2 \)
\((a_{sto, \min} = 5.1 \text{ cm}^2 \) \(a_{stu, \min} = 11.5 \text{ cm}^2 \)

crack control
concr. tens. strength (load) \(f_{\text{ct}, \text{eff}} = f_{\text{ctm}} = 2.56 \text{ N/mm}^2 \)
effective slab width \(b_{\text{eff}} = 51.4 / 59.8 \text{ cm} \)
\(\sigma_{so} = 0.0 \text{ N/mm}^2 \) \(\sigma_{su} = 385.7 \text{ N/mm}^2 \)
\(\sigma_{so} = 0.0 \text{ N/mm}^2 \) \(\varepsilon_s: \varepsilon_c = 0.000 \text{%} \) \(\sigma_{su} = 5.71 \text{ N/mm}^2 \) \(\varepsilon_s: \varepsilon_c = 1.747 \text{%} \)
\(\sigma_{cto} = 171.6 \text{ mm} \) \(\sigma_{ctu} = 0.0 \text{ cm}^2 (d_{so} = 20 \text{ mm}) \)
\(a_{sto, \text{ste}} = 37.5 \text{ cm}^2 \) \(a_{stu, \text{ste}} = 21.3 \text{ mm} \) \(w_u = 0.28 \text{ mm} \)
additional reinforcement
\(\max a_{sto} = 5.1 \text{ cm}^2 \) \(\Rightarrow a_{sto} = 5.1 \text{ cm}^2 \)

\[\Rightarrow \text{incl. anti-crack reinforcement: } \min a_s = 5.1 \text{ cm}^2 \min a_{su} = 37.5 \text{ cm}^2 \]

fatigue design (EC 2, 6.6.8 + 6.8.7(2))
for steel: \(U_{s1} = \Delta \sigma \leq U_{s2} = 70.0 \text{ N/mm}^2 \)
stress range \(\Delta \sigma = \sigma_{so} - \sigma_{su} \)
shear force: \(U_{s1v} = \Delta \sigma_{sv} \leq U_{s2v} = 70.0 \text{ N/mm}^2 \)
for conc.: \(U_{c1} = |\sigma_{cd, \max} | / f_{\text{cd}, \text{fat}} \leq 0.5 + 0.45 \) \(|\sigma_{cd, \min} | / f_{\text{cd}, \text{fat}} \leq 0.9 \)
design value of compression strength \(f_{\text{cd}, \text{fat}} = 15.00 \text{ N/mm}^2 \) at \(t_0 = 28 \text{ d} \)
material safety \(\gamma_c = 1.50 \)
reduction factor of shear force \(a_c = 0.75 \) \((f_{\text{cd}, \text{fat}} = a_c f_{\text{cd}, \text{fat}}) \)
load: \(N_s = 50.00 \text{ kN} \) \(M_s = 900.00 \text{ kNm} \) \(V_s = 50.00 \text{ kN} \)
\(N_s = 100.00 \text{ kN} \) \(M_s = 1350.00 \text{ kNm} \) \(V_s = 75.00 \text{ kN} \)
reinforcement (initial state): \(A_{so} = 5.12 \text{ cm}^2 \) \(A_{su} = 37.51 \text{ cm}^2 \) \(a_s, b_o = 3.28 \text{ cm}^2 / \text{m} \)
fatigue design for steel:
initial state:
\(\Delta \sigma_{so} = 39.79 - \varepsilon_{so} = 20.53 \text{ N/mm}^2 \)
\(\Delta \sigma_{so} = 417.85 - 276.72 = 141.13 \text{ N/mm}^2 \)
end state:
\(\Delta \sigma_{so} = -32.05 - -48.36 = 16.31 \text{ N/mm}^2 \)
\(U_{s1} = 16.31 < U_{s2} = 70.00 \Rightarrow \Delta \sigma_{so, \text{fat}} = 0.0 \text{ cm}^2 \)
\(\Delta \sigma_{su} = 207.24 - 137.31 = 69.93 \text{ N/mm}^2 \)
\(U_{s1} = 69.93 < U_{s2} = 70.00 \Rightarrow \Delta \sigma_{su, \text{fat}} = 39.6 \text{ cm}^2 \)
reinforcement (shear force):
\(\Delta \sigma_{sv} = 156.90 - 104.60 = 52.30 \text{ N/mm}^2 \)
\(U_{s1v} = 52.30 < U_{s2v} = 70.00 \)

\[\Rightarrow \text{incl. fatigue reinforcement: } \min a_s = 5.1 \text{ cm}^2 \min a_{su} = 77.1 \text{ cm}^2 \]

limitation of steel tension and concrete compression stresses (EC 2, 7.2)
permitted tensile stress of reinf. \(\sigma_s = 0.80 \cdot f_y = 400.0 \text{ N/mm}^2 \)
permitted concrete compression stress \(\sigma_c = 0.60 \cdot f_{ck} = -15.0 \text{ N/mm}^2 \)
stress forces and moments: \(N_o = 100.00 \text{ kN} \) \(M_o = 1500.00 \text{ kNm} \)
reinforcement (initial state): \(A_s = 5.12 \text{ cm}^2 \) \(A_{su} = 77.14 \text{ cm}^2 \)
maximal reinforcement tensile stresses
initial state:
\(\sigma_{so} = -54.1 \text{ N/mm}^2 \) \(\sigma_{su} = 229.8 \text{ N/mm}^2 \)
= end state
minimal concrete compression stress
initial state:
\[\sigma_{\text{c}} = -9.6 \, \text{N/mm}^2 \]
end state

⇒ no additional stress reinforcement!

total reinforcement:
\[A_{\text{s0}} = 5.1 \, \text{cm}^2 \quad A_{\text{su}} = 77.1 \, \text{cm}^2 \]

degree of utilization:
\[U = 0.51 \]

selected:
longitudinal, top: 2 \(\varnothing \, 10 = 1.6 \, \text{cm}^2 < 5.1 \, \text{cm}^2 \)
bottom: 8 \(\varnothing \, 20 + 4 \varnothing \, 20 = 37.7 \, \text{cm}^2 < 77.1 \, \text{cm}^2 \)

stirrups, 2-shear: \(\varnothing \, 8 / 30 \, \text{cm} = 3.35 \, \text{cm}^2/m > 3.28 \, \text{cm}^2/m \)

anchorage lengths top \((A_{\text{s0, min}} = 0.00 \, \text{cm}^2 \quad A_{\text{s0, ext}} = 1.57 \, \text{cm}^2) \):
- \(b_0 \): basic size of anchorage length
- \(l_{\text{b, min}} \): minimum value of anchorage length
- \(l_{\text{b, ext}} \): anchorage length
curt. of longitudinal reinforcement: anch. l. at \(b_0 \), direct end support, \(b_{\text{n, int}} \): indirect end support, \(b_{\text{n, ext}} \): intermediate support

with hooks:
\[l_0 = 57.7 \, \text{cm}, \quad l_{\text{b, min}} = 12.1 \, \text{cm}, \quad l_{\text{b, net}} = 12.1 \, \text{cm} \]
\[l_{\text{b, dir}} = 8.1 \, \text{cm}, \quad l_{\text{b, ext}} = 6.0 \, \text{cm} \]

without:
\[l_0 = 57.7 \, \text{cm}, \quad l_{\text{b, min}} = 17.3 \, \text{cm}, \quad l_{\text{b, net}} = 17.3 \, \text{cm} \]
\[l_{\text{b, dir}} = 11.5 \, \text{cm}, \quad l_{\text{b, ext}} = 6.0 \, \text{cm} \]

anchorage lengths bottom \((A_{\text{s0, min}} = 37.5 \, \text{cm}^2 \quad A_{\text{s0, ext}} = 37.7 \, \text{cm}^2) \):
- \(b_0 \): basic size of anchorage length
- \(l_{\text{b, min}} \): minimum value of anchorage length
- \(l_{\text{b, ext}} \): anchorage length
curt. of longitudinal reinforcement: anch. l. at \(b_0 \), direct end support, \(b_{\text{n, int}} \): indirect end support, \(b_{\text{n, ext}} \): intermediate support

with hooks:
\[l_0 = 80.7 \, \text{cm}, \quad l_{\text{b, min}} = 20.0 \, \text{cm}, \quad l_{\text{b, net}} = 56.2 \, \text{cm} \]
\[l_{\text{b, dir}} = 37.5 \, \text{cm}, \quad l_{\text{b, ext}} = 12.0 \, \text{cm} \]

without:
\[l_0 = 80.7 \, \text{cm}, \quad l_{\text{b, min}} = 24.2 \, \text{cm}, \quad l_{\text{b, net}} = 80.3 \, \text{cm} \]
\[l_{\text{b, dir}} = 53.5 \, \text{cm}, \quad l_{\text{b, ext}} = 12.0 \, \text{cm} \]

reinforcement drawing:
scale 1:30

\[c_{\text{vo}} = 2.5 \, \text{cm} \]
\[c_{\text{uv}} = 3.5 \, \text{cm} \]

cross-section data
- gross area of concrete: \(A_{\text{c}} = 70.0 \, \text{dm}^2 \)
- second moment of area: \(I_{\text{c5}} = 723.0 \, \text{dm}^4 \)
- moment of resistance: \(W_{\text{c5}} = 119.1 \, \text{dm}^3 \)
- distance of centre of gravity from upper edge: \(z_{\text{s}} = 39.3 \, \text{cm} \)
- total area of longitudinal reinforcement: \(\Sigma_{\text{min}} A_{\text{s}} = 82.3 \, \text{cm}^2 \)

material properties for design calculation

<table>
<thead>
<tr>
<th>concrete</th>
<th>(f_{\text{k}, \text{c}})</th>
<th>(\alpha)</th>
<th>(e_{\text{c2}})</th>
<th>(e_{\text{c2u}})</th>
<th>(n_{\text{c}})</th>
<th>(E_{\text{c}})</th>
<th>(f_{\text{cm}})</th>
<th>reinforcement</th>
<th>(f_{\text{yk}})</th>
<th>(f_{\text{tk}})</th>
<th>(e_{\text{su}})</th>
<th>(E_{\text{s}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>C25/30</td>
<td>25.0</td>
<td>0.850</td>
<td>-2.00</td>
<td>-3.50</td>
<td>2.00</td>
<td>31475.8</td>
<td>2.565</td>
<td>BSt 500 (A)</td>
<td>500.0</td>
<td>525.0</td>
<td>25.00</td>
<td>200000.0</td>
</tr>
<tr>
<td>design value of compression strength (f_{\text{cd}} = f_{\text{k}, \text{c}} / \gamma_{\text{c}})</td>
<td></td>
</tr>
<tr>
<td>design yield strength (f_{\text{yd}} = f_{\text{k}} / \gamma_{\text{y}})</td>
<td></td>
</tr>
</tbody>
</table>

\(\gamma_{\text{c}} \) and \(\gamma_{\text{y}} \) are coefficients for modulus of elasticity \(E_{\text{cm}} \) and mean value of axial tensile strength \(f_{\text{cm}} \)