
POS. 25: KREIS (STB.)

Biege- und Schubbemessung (EC 2 (1.11), NA: Deutschland)

Einachsige Biegung mit/ohne Normalkraft (4H-BETON Version: 11/2007-41)

Kreis-Querschnitt

 $r_a = 20.0 \text{ cm} \implies \textit{Ø}_a = 40.0 \text{ cm}$ Randabstände der Längsbewehrung Min./Max. Bewehrung

 $d_a = 5.5 \text{ cm}$ Materia1

C25/30BSt 500 (A) $\gamma_{s} = 1.15, \gamma_{c} = 1.50$

Expositionsklasse XO

Bewehrungsanordnung

außen umlaufende Bewehrung

min A_s (9.5.2), max $\rho_0 = 8.00\%$

Grundbewehrung

 $A_{s0a} = 0.00 \text{ cm}^2$

 $a_{s0b\ddot{u}} = 0.00 \text{ cm}^2/\text{m}$

Nachweise in den Grenzzuständen der Tragfähigkeit werden mit der Spannungsdehnungslinie für den Beton nach 3.1.7 (Bild 3.3)

mit fcd = α c fck / γ c = 14.2 MN/m2 und der Spannungsdehnungslinie für die Bewehrung nach 3.2.7 (Bild 3.8) mit fyd = fyk / γ s = 434.8 MN/m2 und ftd = ftk / γ s = 456.5 MN/m2 geführt !

Nachweise in den Grenzzuständen der Gebrauchstauglichkeit werden mit der Spannungsdehnungslinie für den Beton nach 3.1.5 (Bild 3.2)

mit fc = fcm = 33.0 MN/m2 und der Spannungsdehnungslinie für die Bewehrung nach 3.2.7 (Bild 3.8) mit fy = fyk, ft = 525.0 MN/m2 und εuk = 25% geführt !

Bemessungsgrößen und erforderliche Bewehrungsquerschnitte (EC 2, 6.1)

	γ	NEd												Bemerkung
	-	kN	kNm	‰	‰	%o	‰	-	-	cm	cm	cm ²	cm ²	
1		-1500.0	126.00	-3.50	-2.82	0.77	1.45	0.85	0.60	33.2	37.8		24.82	

ες2u = -3.50%: Betondehnung im Bruchzustand (Faser 2), εs1u = 25.00%: Dehnung der Bewehrung im Bruchzustand (Faser 1) x = ξ d: Höhe der Betondruckzone, z = ζ d: Hebelarm der inneren Kräfte, d: statische Nutzhöhe, bw: wirksame Querschnittsbreite bw nach NABau (01/05): kleinste Querschnittsbreite senkrecht zum inneren Hebelarm z in Höhe der inneren Kräfte

 $erf A_{sa} = 24.8 cm^2$ ⇒ Längsbewehrung:

Schubbemessung (EC 2, 6.2 + 6.3)

Mindestbewehrung nach 9.2.2(5), Materialgüte wie Biegebewehrung

 $z = 0.9 \text{ d } (6.2.3(1)), c_{V,D} = 3.0 \text{ cm}, D = Druckbewehrung}$

Bewehrungswinkel $\alpha = 90.0^{\circ}$, Druckstrebenwinkel $\theta_{\text{gew}} = 0^{\circ}$, Wirksamkeitsfaktor $\alpha_{k} = 0.90$

Der Mindestwert von V_{Rdct} wird nach Norm begrenzt ($V_{Rdct} \ge min V_{Rdct}$).

Bemessung für Querkraft (EC 2, 6.2)

	VEd	ρΊ	Z	V_{Rdct}	θ	$\cot \theta$	V_{Rdmax}	ΑB	a٦	as,büv	Bemerkung
	kN	%	cm	kΝ	0		kΝ		cm	cm2/m	
1	250.00	1.98	27.2	124.51	27.8	1.90	451.13	2	25.8	12.36	

pi: Längsbewehrungsgrad bezogen auf die statische Höhe, z: maßgebender innerer Hebelarm

 V_{Rdct} : Bemessungswert der Querkrafttragfähigkeit ohne Querkraftbewehrung, θ : Druckstrebenwinkel,

V_{Rdmax}: Bemessungswert der maximalen Querkrafttragfähigkeit, al: Versatzmaß

AB: Ausnutzungsbereich s. NA-DE

Die Längsbewehrung stabförmiger Druckglieder mit ed/h < 0.30 muss nach 9.5.3(6) durch Querbewehrung umschlossen werden !

 $erf a_{s.b\bar{u}} = 12.36 cm^2/m$ ⇒ Schubbewehrung:

Begrenzung der Rissbreite (EC 2, 7.3: 7.3.2 Mindestbewehrung, 7.3.3 ohne direkte Berechnung)

Rissbildung unter zentr. Zwang (selbst induz.) Mindestbewehrung:

Faktor für Erhärtungsablauf $k_{z,t} = 1.00$

Rissbreite $w_k = 0.25 \text{ mm}$

gew. Durchmesser $d_{sa} = 10 \text{ mm}$

Rissschnittgrößen:

 $N_r = -1700.00 \text{ kN}$ $M_r = 220.00 \text{ kNm}$

Anfangszustand: $A_{sa} = 24.82 \text{ cm}^2$

Beiwert - Spannungsverteilung $k_c = 1.00$

Beiwert - Eigenspannungen k = 0.77

Betonzugfestigkeit (Zwang) $f_{ct,eff} = 2.56 \text{ N/mm}^2$

Zugzone $A_{cta} = 6.3 \text{ dm}^2$

 $(A_{sta,min} = 8.9 \text{ cm}^2)$

Begrenzung der Rissbreite:

Betonzugfestigkeit (Last) $f_{ct,eff} = f_{ctm} = 2.56 \text{ N/mm}^2$

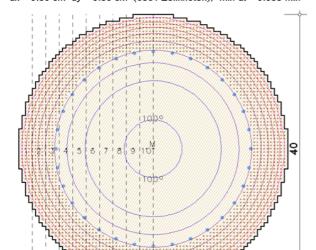
 $\sigma_{\text{sa}} = 230.2 \text{ N/mm}^2$

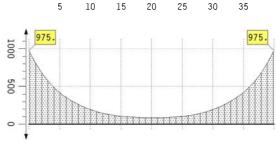
(Asta,ste = 24.8 cm² (\Rightarrow d_{sa} = 35.3 mm > 10))

Nachweis nicht erforderlich !

⇒ keine zusätzliche Rissbewehrung !


```
Nachweis der Ermüdung (EC 2, 6.8.5 + 6.8.7(1))
 für Stahl: U_{s1} = \gamma_{F,fat} \gamma_{Ed,fat} \Delta \sigma_{s,equ} \leq U_{s2} = \Delta \sigma_{Rsk} (N^*)/\gamma_{s,fat} = 152.17 \text{ N/mm}^2
                schädigungsäquivalente Spannungsschwingbreite \Delta \sigma_{s,equ} = \sigma_{s,0} - \sigma_{s,U}
                Teilsicherheitsbeiwerte \gamma_{F,fat} = 1.00, \gamma_{Ed,fat} = 1.00, \gamma_{s,fat} = \gamma_{s} = 1.15
                zul. Spannungsschwingbreite \Delta \sigma_{Rsk} (N*) = 175.0 N/mm<sup>2</sup>
                für Querkraft: \Delta \sigma_{Rskv} (N*) = 107.0 N/mm<sup>2</sup> \Rightarrow U<sub>S2V</sub> = \Delta \sigma_{Rskv} (N*)/\gamma_{s,fat} = 93.04 N/mm<sup>2</sup>
 für Beton: U_{c1} = |\sigma_{cd,max,equ}|/f_{cd,fat} + 0.43 \text{ sqrt}(1 - \sigma_{cd,min,equ}|/\sigma_{cd,max,equ}) \le 1.0
                Bemessungswert der Zylinderdruckfestigkeit f_{cd,fat} = 15.00 \text{ N/mm}^2 bei t_0 = 28 \text{ d}
                Materialsicherheit \gamma_{c,fat} = \gamma_{c} = 1.50
 Belastung: N_{s1} = -1200.00 \text{ kN} M_{s1} = 86.00 \text{ kNm} V_{s1} = 250.00 \text{ kN}
               N_{s2} = -1450.00 \text{ kN} M_{s2} = 105.00 \text{ kNm} V_{s2} = 145.00 \text{ kN}
 Bewehrung (Anfangszustand): A_{sa} = 24.82 \text{ cm}^2 \text{ as,buy} = 12.36 \text{ cm}^2/\text{m}
 Ermüdungsnachweis für Stahl:
                                                                    Ermüdungsnachweis für Beton:
 Anfangszustand:
                                                                   \sigma_{\text{cd,min,equ}} = 19.63 \text{ N/mm}^2
                                                                    \sigma_{\text{cd,max,equ}} = 23.36 \text{ N/mm}^2
 \Delta \sigma_{\text{s0a,equ}} = -126.13 - -158.90 = 32.77 \text{ N/mm}^2
 = Endzustand
                                                                    U_{c1} = 1.73 > 1.00 \Rightarrow \text{Nachweis nicht erfüllt !}
 Querkraftbewehrung:
                                                                    Nachweis der Betondruckstrebe:
 \Delta \sigma_{\text{SV,equ}} = 203.15 - 110.10 = 93.04 \text{ N/mm}^2 = U_{\text{S2V}}
                                                                   \sigma_{cdv,min,equ} = 5.18 \text{ N/mm}^2
                                                                    \sigma_{\text{cdv,max,equ}} = 8.28 \text{ N/mm}^2
   \Rightarrow \Delta a_{sb\ddot{u},fat} = 35.00 \text{ cm}^2/\text{m}
                                                                    U_{clv} = 0.74 > 0.71 \Rightarrow Nachweis nicht erfüllt !
       ⇒ einschl. Ermüdungsbewehrung:
                                                        erf A_{sa} = 24.8 cm^2
                                                        erf a_{s,buv} = 47.37 cm^2/m
       ⇒ Ermüdungsnachweis für Beton nicht erfüllt !
Begrenzung der Stahlzug- und Betondruckspannungen (EC 2, 7.2)
 zulässige Stahlzugspannung \sigma_s = 0.80 \cdot f_{yk} = 400.0 \text{ N/mm}^2
 zulässige Betondruckspannung \sigma_c = 0.60 \cdot f_{ck} = -15.0 \text{ N/mm}^2
 Spannungsschnittgrößen: N_{\sigma} = -1500.00 kN, M_{\sigma} = 126.00 kNm
 Bewehrung (Anfangszustand): A_{sa} = 24.82 \text{ cm}^2
 maximale Stahlzugspannungen
                                             minimale Betondruckspannung
 Anfangszustand:
                                             Anfangszustand:
 \sigma_{0sa} = 44.1 \text{ N/mm}^2
                                             \sigma_{0c} = -26.5 \text{ N/mm}^2
 Endzustand:
                                             Endzustand:
 \sigma_{\text{sa}} = 11.2 \text{ N/mm}^2 < 400.0 \text{ N/mm}^2
                                             \sigma_c = -14.8 \text{ N/mm}^2 > -15.0 \text{ N/mm}^2
                \Rightarrow \Delta A_{s\sigma a} = 170.8 \text{ cm}^2
                                                       erf A_{sa} = 195.6 \text{ cm}^2 \text{ (max } \rho_0 \text{ !)}
       ⇒ einschl. Spannungsbewehrung:
Heißbemessung (Brandschutz) nach EC2, Teil 1-2 (10.06)
 mod. Zonenmethode (10 Zonen)
 Beflammung einer Stütze von allen Seiten, Branddauer 90 min
 konvektiver Wärmeübergangskoeffizient \alpha=25.0 W/m<sup>2</sup>K, Emissionswert für die Betonoberfläche \epsilon=0.70
 Normalbeton mit quarzhaltigen Zuschlägen, Feuchtegehalt 1.5%, obere Grenze der therm. Leitfähigkeit
 warmgewalzter Bewehrungsstahl, Rohdichte (Stahlbeton) \rho_c = 2300 \text{ kg/m}^3
 Annahme für die Bemessung: Betontemperatur des kältesten Querschnittspunkts (Punkt M)
 Annahme für die Bemessung: keine inneren Spannungen berücksichtigen
 Annahme für die Bemessung: Spannungsdehnungslinienform nach EC 2 (Brandfall)
```


Näherungsverfahren für instationären Wärmetransport


Finite-Volumen-Methode mit expliziter Zeitintegration unter Berücksichtigung nichtlinearer Material- und Randbedingungen

Temperaturprofil (90 min, um 0° gedreht):

dx = 0.50 cm dy = 0.50 cm (6561 Zellknoten), min dt = 0.055 min

Temperatur Max: 975.24°C Min: 86.72°C

Temperaturen für 10 Zonen mit zugehörigen Reduktionskoeffizienten:

```
\Theta_1 = 826.1°C, k_{c1} = 0.132 \Theta_2 = 588.0°C, k_{c2} = 0.468 \Theta_3 = 425.0°C, k_{c3} = 0.712
\Theta4 = 311.2°C, k_{c4} = 0.839
                                     \Theta_5 = 229.3^{\circ}\text{C}, k_{c5} = 0.921
                                                                             \Theta_6 = 169.8^{\circ}C, k_{c6} = 0.965
\Theta_7 = 129.2°C, k_{c7} = 0.985
                                     \Theta_8 = 105.6°C, k_{c8} = 0.997
                                                                            \Theta_9 = 93.6°C, k_{c9} = 1.000
\Theta_{10} = 87.8°C, k_{c10} = 1.000
```

mittlerer Reduktionskoeffizient (zugeh. Temperatur): $k_{cm} = 0.802$ ($\Theta_{cm} = 348.1^{\circ}C$) Temperatur im Punkt M mit zugehörigen Reduktionskoeffizienten: $\Theta_{\text{CM}} = 86.7^{\circ}\text{C}$, $k_{\text{CM}} = 1.000$ statisch unwirksame Betonrandzone: $a_z = 5.10$ cm

Temperatur im Beton (Bemessung) mit zugehörigem Reduktionskoeffizienten: $\Theta_c = 86.7$ °C, $k_c = 1.000$ Temperaturen in der Bewehrung: $\Theta_{sa} = 395.5$ °C

zugehörige Reduktionskoeffizienten: $k_{sy,a} = 1.000$ $k_{sp,a} = 0.429$

Heißbemessung für $\gamma_c = \gamma_s = 1$ (Spannungsdehnungslinienparameter nach 3.2)

reduzierter Querschnittsradius: r = 14.90 cm

Bemessungsgrößen: $N_{Ed,fi} = -1500.00 \text{ kN} \text{ MyEd,fi} = 126.00 \text{ kNm}$

Materialdaten:

```
Beton \Theta_c = 87^{\circ}\text{C}: f_{c,\Theta} = 25.0 \text{ N/mm}^2 (E_{c,\Theta} = 31475.8 \text{ N/mm}^2)
               \varepsilon_{c1,\Theta} = \varepsilon_{cu1,\Theta} = -3.75\% \varepsilon_{cV,\Theta} = 0.00\%
              \Theta_s = 395^{\circ}\text{C}: f_{sp,\Theta} = 214.3 \text{ N/mm}^2 f_{sy,\Theta} = 500.0 \text{ N/mm}^2 E_{s,\Theta} = 140906.1 \text{ N/mm}^2
               \epsilon_{\text{sp},\Theta} = 1.52\% \epsilon_{\text{sy},\Theta} = 20.00\% \epsilon_{\text{st},\Theta} = \epsilon_{\text{su},\Theta} = 50.00\% \epsilon_{\text{sv},\Theta} = 0.00\%
```

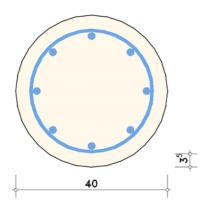
 $erf A_{sa} = 46.12 cm^2$ ⇒ Brandbewehrung:

total $A_{sa} = 195.6 \text{ cm}^2 \text{ (max } \rho_0 \text{ !)}$ Gesamtbewehrung: total $a_{s,buv} = 47.37 \text{ cm}^2/\text{m}$

Ermüdungsnachweisnachweis für Beton nicht erfüllt!

```
gewählt: Längs, außen: 8 Ø 20 = 25.1 \text{ cm}^2 < 195.6 \text{ cm}^2
             Bügel, außen: \emptyset 10 / 30 cm = 5.24 cm<sup>2</sup>/m < 47.37 cm<sup>2</sup>/m
```

Verankerungslängen außen ($A_{sb,erf} = 24.82 \text{ cm}^2 A_{s,vorh} = 25.13 \text{ cm}^2$):


lb: Grundmaß der Verankerunglänge, lb,min: Mindestwert der Verankerunglänge, lb,net: Verankerunglänge $\label{eq:Zugkraftdeckung:Verankerunglange am Ib, dir. direkten Endauflager, Ib, ind: indirekten Endauflager, Ib, ind: indirekten Endauflager, Ib, Zwi: Zwischenauflager, Ib, direkten Endauflager, Ib$

```
= 80.7 \text{ cm}, 1_{b,min} = 20.0 \text{ cm}, 1_{b,net} = 55.8 \text{ cm}
mit Winkelhaken: 1b
                           l_{b,dir} = 37.2 \text{ cm},
                                                      1b, ind = 55.8 cm,
                                                                                   l_{b,Zwi} = 12.0 \text{ cm}
                                                      1_{b,min} = 24.2 \text{ cm},
                                                                                   1_{b,net} = 79.7 \text{ cm}
                                    = 80.7 \text{ cm},
ohne:
                           l_{b,dir} = 53.1 \text{ cm},
                                                      l_{b,ind} = 79.7 \text{ cm},
                                                                                  1_{b,Zwi} = 12.0 \text{ cm}
```

Bewehrungsskizze:

Maßstab 1 : 10

cv = 3.5 cm

Querschnittsdaten

Bruttobetonfläche: $A_c = 12.6 \text{ dm}^2$, Flächenträgheitsmoment: $I_{cs} = 12.6 \text{ dm}^4$

Schwerpunktsabstand vom oberen Rand: $z_s = 20.0$ cm

Gesamtfläche der Längsbewehrung: $\Sigma(\text{erf A}_{\text{S}}) = 195.6 \text{ cm}^2 \implies \rho_{\text{S}} = 15.56\% > 8.00\%$

Materialdaten für die Bemessung

Beton	fck MN/m ²		€c2	€c2u	nc	Ecm	
	MIN / III-		700	‰	-	MN/m ²	MIN / III-
C25/30	25.0 0	.850	-2.00	-3.50	2.00	31475.8	2.565

			MN/m²	MN/m∠	‰	MN/m²				
BSt	500	(A)	500.0	525.0	25.00	200000.0				
Bemessungswert der Streckgrenze f _{Vd} = f _{Vk} / γs										

Bemessungswert der Zylinderdruckfestigkeit $f_{cd} = \alpha_C \; f_{ck} / \gamma_C$ Dehnung beim Erreichen der Festigkeitsgrenze ϵ_{c2} , Bruchdehnung ϵ_{c2u} Betonspannungen $\sigma_C = f_{cd} \; (1 - (1 - \epsilon_C / \epsilon_C 2)^n) \; für \; 0 \ge \epsilon_C > \epsilon_C 2 \; und \; \sigma_C = f_{cd} \; für \; \epsilon_C 2 \ge \epsilon_C > \epsilon_C 2 u$ Elastizitätsmodul E_{cm} , Mittelwert der zentrischen Zugfestigkeit f_{ctm}

Bemessungswert der Zugfestigkeit f $_{td}$ = f_{tk} / γ_s Stahlbruchdehnung ϵ_{su} , Elastizitätsmodul E $_s$

Bewehrung

weisen auf einen unzulässigen bzw. nicht ermittelbaren Zustand hin !