Biegesteifer Trägeranschluss EC 3-1-8 (12.10), NA: Deutschland

1. Eingabeprotokoll

Anschluss rechts

Schnitt B-B

Schnitt A-A

Schnitt A-A

Schnitt A-A
Details (Schnitt A - A)

Anschluss links
Nach EC 3-1-8, 5.3 wird bei zweisitzigen Träger-Stützen-Verbindungen jede Anschlussseite unabhängig von der anderen untersucht. Der Versatz der Trägeroberkanten (rechts-links) beträgt 233.0 mm.

Stahlüste
- Stahlgüte S235
- **Parameter der Stütze**
 - Profil HE280A
 - Verstärkung des Profils durch Quersteifen (Stege in Höhe des max. Trägerzug- und -druckflanschs, d_{st} = 619.7 mm):
 - Dicke t_{st} = 12.0 mm, Breite b_{st} = 136.0 mm, Länge l_{st} = 244.0 mm
 - Aussparung an den Stellen d_{st} = 36.0 mm
 - Schweißnähte a_{st,l} = 4.0 mm, a_{st,w} = 4.0 mm
- **Zweiseitiger Träger-Stützenanschluss, rechts**
 - Schrauben
 - Festigkeitsklasse 10.9, Schraubengröße M20
 - große Schlüsselweite (HV-Schraube), vorgespannt (zur Info: Regelvorspannkraft F_{p,c} = 0.7 f_{y,b} A_{s} = 154.3 kN)
 - Schaft in der Scherluge
 - **Parameter des Trägers**
 - Profil HE280A
 - Neigungswinkel der Voute gegen die Horizontale α_{v} = 35.00°
 - Lange der Voute L_{v} = 500.0 mm, Voutenhöhe im Anschluss h_{v} = \frac{L_{v}}{2}(\tan(α_{v}) - \tan(α_{b})) = 350.1 mm
 - Stegdicke t_{v,β} = 8.0 mm, Flanschbreite -dicke b_{v,β} = 260.0 mm, b_{v} = 13.0 mm
 - Gesamte Trägerhöhe im Anschluss h_{ges} = h_{b} + h_{v} = 620.1 mm
 - **Nachweissparameter**
 - geschraubter Stirnblechanschluss:
 - Dicke t_{p} = 20.0 mm, Breite b_{p} = 280.0 mm, Länge l_{p} = 720.1 mm
 - Überstände h_{p,o} = 80.0 mm, h_{p,w} = 20.0 mm
 - Schrauben im Anschluss:
 - 4 Schraubenreihen mit je 2 Schrauben
 - alle Schraubenreihen einzeln betrachtet
 - alle Schraubenreihen zur Querkraftübertragung (Reihen 1-4)
 - Schraubengruppen automatisch bilden, Berücks. aller Gruppen bzgl. Reihe 1
 - Achsabstand der Schraubenreihe zum seitlichen Rand des Stirnbleches e_{2} = 50.0 mm
 - Achsabstand der ersten Schraubenreihe zum oberen Rand des Stirnbleches (Endreihe) e_{o} = 40.0 mm
 - Achsabstand der letzten Schraubenreihe zum unteren Rand des Stirnbleches (Endreihe) e_{u} = 70.1 mm
 - Achsabstand der Schraubenreihen voneinander p_{1-2} = 90.0 mm, p_{2-3} = 70.0 mm, p_{3-4} = 450.0 mm
 - Schweißnähte im Anschluss:
 - Trägerflansch oben: Kehlnaht, Nahtdicke a = 4.0 mm
 - Trägersteg: Kehlnaht, Nahtdicke a = 4.0 mm
 - Trägerflansch unten: Kehlnaht, Nahtdicke a = 4.0 mm, Öffnungswinkel φ = 125°
 - **Zweiseitiger Träger-Stützenanschluss, links**
 - **Parameter des Trägers**
 - Profil HE200A
 - **Nachweissparameter**
 - Schweißnähte im Anschluss:
 - Trägerflansch oben: Kehlnaht, Nahtdicke a = 4.0 mm
 - Trägersteg: Kehlnaht, Nahtdicke a = 4.0 mm
 - Trägerflansch unten: Kehlnaht, Nahtdicke a = 4.0 mm
 - **Schnittgrößen im Schnittpunkt der Systemachsen**
 - Lk 1: \(N_{1,b1,Ed} = 7.25 \text{ kN}, M_{1,b1,Ed} = -8.15 \text{ kNm}, V_{1,b1,Ed} = 12.74 \text{ kN} \) (rechts)
 - \(N_{2,b2,Ed} = -5.46 \text{ kN}, M_{2,b2,Ed} = -14.47 \text{ kNm}, V_{2,b2,Ed} = -14.53 \text{ kN} \) (links)
 - \(N_{1,c1,Ed} = -55.15 \text{ kN}, M_{1,c1,Ed} = 7.39 \text{ kNm}, V_{1,c1,Ed} = 11.43 \text{ kN} \) (unten)
 - \(N_{2,c2,Ed} = -26.99 \text{ kN}, M_{2,c2,Ed} = 1.75 \text{ kNm}, V_{2,c2,Ed} = -1.27 \text{ kN} \) (oben)
 - Lk 2: \(N_{1,b1,Ed} = 8.81 \text{ kN}, M_{1,b1,Ed} = -18.74 \text{ kNm}, V_{1,b1,Ed} = 20.03 \text{ kN} \) (rechts)
 - \(N_{2,b2,Ed} = 2.61 \text{ kN}, M_{2,b2,Ed} = -7.21 \text{ kNm}, V_{2,b2,Ed} = -11.86 \text{ kNm} \) (links)
 - \(N_{1,c1,Ed} = -67.66 \text{ kN}, M_{1,c1,Ed} = -3.47 \text{ kNm}, V_{1,c1,Ed} = -3.10 \text{ kN} \) (unten)
 - \(N_{2,c2,Ed} = -34.56 \text{ kN}, M_{2,c2,Ed} = 7.67 \text{ kNm}, V_{2,c2,Ed} = -9.41 \text{ kN} \) (oben)
Lk 3:
\[
\begin{align*}
N_{b1,Ed} &= 9.96 \text{ kN} & M_{b1,Ed} &= -13.00 \text{ kNm} & V_{b1,Ed} &= 17.93 \text{ kN} \\
N_{b2,Ed} &= -4.78 \text{ kN} & M_{b2,Ed} &= -18.34 \text{ kNm} & V_{b2,Ed} &= -17.80 \text{ kN} \\
N_{c1,Ed} &= -72.69 \text{ kN} & M_{c1,Ed} &= 6.43 \text{ kNm} & V_{c1,Ed} &= 10.63 \text{ kN} \\
N_{c2,Ed} &= -35.95 \text{ kN} & M_{c2,Ed} &= 3.74 \text{ kNm} & V_{c2,Ed} &= -3.71 \text{ kN}
\end{align*}
\]
\[(statspot) \text{ unten}]
\[
N_{b1,Ed} &= 6.60 \text{ kN} & M_{b1,Ed} &= -13.88 \text{ kNm} & V_{b1,Ed} &= 14.84 \text{ kN} \\
N_{b2,Ed} &= 1.99 \text{ kN} & M_{b2,Ed} &= -5.34 \text{ kNm} & V_{b2,Ed} &= -8.78 \text{ kN} \\
N_{c1,Ed} &= -50.12 \text{ kN} & M_{c1,Ed} &= -2.57 \text{ kNm} & V_{c1,Ed} &= -2.30 \text{ kN} \\
N_{c2,Ed} &= -25.60 \text{ kN} & M_{c2,Ed} &= 5.68 \text{ kNm} & V_{c2,Ed} &= -6.97 \text{ kN}
\]
\[(statspot) \text{ oben}]

Material sicherheitsbeiwerte

\(\gamma_0 = 1.00\)

\(\gamma_1 = 1.10\)

\(\gamma_2 = 1.25\)

Datenschutz

Anschluss rechts:

\(\text{ok}\)

Anschluss links:

\(\text{ok}\)

Schrauben rechts:

Abstände der Schraubenreihen am Stirnblech:

- horizontal: \(d_2 = 50.0 \text{ mm} \times 1.2 \text{ dp} = 26.4 \text{ mm}\), \(d_2 = 50.0 \text{ mm} \leq 44 + 40 \text{ mm} = 92.0 \text{ mm}\)
- vertical: \(e_1 = 40.0 \text{ mm} \times 1.2 \text{ dp} = 26.4 \text{ mm}\), \(e_1 = 40.0 \text{ mm} \leq 44 + 40 \text{ mm} = 92.0 \text{ mm}\)

Maximale Rand- und Lochabstände sollten zur Vermeidung von Korrosion sowie zur Verhinderung lokaler Beulen eingehalten werden.

Ausnutzungen je Anschlussseite (rechts):

<table>
<thead>
<tr>
<th>Lk</th>
<th>(U_b)</th>
<th>(U_v)</th>
<th>(U_{ep})</th>
<th>(U_{sb})</th>
<th>(U_{ss})</th>
<th>(U_{sw})</th>
<th>(U)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.037</td>
<td>0.008</td>
<td>0.011</td>
<td>0.022</td>
<td>0.031</td>
<td>0.578</td>
<td>0.578</td>
</tr>
<tr>
<td>2</td>
<td>0.079</td>
<td>0.014</td>
<td>0.018</td>
<td>0.047</td>
<td>0.067</td>
<td>0.414</td>
<td>0.414</td>
</tr>
<tr>
<td>3</td>
<td>0.058</td>
<td>0.012</td>
<td>0.016</td>
<td>0.034</td>
<td>0.049</td>
<td>0.685</td>
<td>0.685</td>
</tr>
<tr>
<td>4</td>
<td>0.059</td>
<td>0.010</td>
<td>0.013</td>
<td>0.035</td>
<td>0.050</td>
<td>0.307</td>
<td>0.307</td>
</tr>
</tbody>
</table>

Ausnutzungen je Anschlussseite (links):

<table>
<thead>
<tr>
<th>Lk</th>
<th>(U_b)</th>
<th>(U_{sb})</th>
<th>(U_{ss})</th>
<th>(U_{sw})</th>
<th>(U)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.199</td>
<td>0.019</td>
<td>0.140</td>
<td>0.582</td>
<td>0.582</td>
</tr>
<tr>
<td>2</td>
<td>0.133</td>
<td>0.086</td>
<td>0.063</td>
<td>0.418</td>
<td>0.418</td>
</tr>
<tr>
<td>3</td>
<td>0.224</td>
<td>0.212</td>
<td>0.155</td>
<td>0.691</td>
<td>0.691</td>
</tr>
<tr>
<td>4</td>
<td>0.098</td>
<td>0.064</td>
<td>0.047</td>
<td>0.310</td>
<td>0.310</td>
</tr>
</tbody>
</table>

2. Endergebnis

Ausnutzung der Verbindung

<table>
<thead>
<tr>
<th>Lk</th>
<th>(U_{J})</th>
<th>(\Sigma H)</th>
<th>(\Sigma V)</th>
<th>(\Sigma M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.562</td>
<td>3.49</td>
<td>3.67</td>
<td>0.75</td>
</tr>
<tr>
<td>2</td>
<td>0.418</td>
<td>5.61</td>
<td>4.82</td>
<td>0.39</td>
</tr>
<tr>
<td>3</td>
<td>0.691*</td>
<td>4.95</td>
<td>4.92</td>
<td>0.65</td>
</tr>
<tr>
<td>4</td>
<td>0.310</td>
<td>4.16</td>
<td>3.57</td>
<td>0.29</td>
</tr>
</tbody>
</table>

\(U_J\): Ausnutzung der Verbindung; \(\Sigma H\): Gleichgewichtskraft; \(\Sigma V\): Gleichgewichtskraftverhältnis; \(\Sigma M\): Gleichgewichtskraftmoment

\(*)\) maximale Ausnutzung

Maximale Ausnutzung [Lk 3]: \(\max U = 0.691 < 1 \text{ ok}\)

Nachweis erbracht
3. Vorschriften

DIN EN 1990, Eurocode 0: Grundlagen der Tragwerksplanung;
DIN EN 1990/NA, Nationaler Anhang zur DIN EN 1990, Ausgabe Dezember 2010

DIN EN 1993-1-1, Eurocode 3: Bemessung und Konstruktion von Stahlbauten -
Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau;
DIN EN 1993-1-1/NA, Nationaler Anhang zur DIN EN 1993-1-1, Ausgabe September 2017

DIN EN 1993-1-8, Eurocode 3: Bemessung und Konstruktion von Stahlbauten -
Teil 1-8: Bemessung von Anschlüssen;

4. Detaillierte Ausgabe von Lk 3 (maßgebend)

Hinweise
Die Querschnittsprofile werden nicht nachgewiesen.

4.1. Anschluss rechts

Hinweise

4.1.1. Bemessungsgrößen

Knotenschnittgrößen Anschluss Anschluss ⊥ zur Anschluss ebene Teilschnittgrößen Voute-Träger

Neigungswinkel: \(\alpha_b = 0.00^\circ, \alpha_v = 35.00^\circ \Rightarrow \alpha = (\alpha_b + \alpha_v)/2 = 17.50^\circ, \Delta \alpha = \alpha - \alpha_b = 17.50^\circ \)
Abstände: \(e_1 = 135.0 \text{ mm}, e_3 = 340.6 \text{ mm}, e_2 = 298.1 \text{ mm}, e_5 = 135.0 \text{ mm}, e_7 = 298.2 \text{ mm}, e_4 = 516.1 \text{ mm} \)

Schnittgrößen senkrecht zu den Anschluss ebene
Anschluss Träger (rechts)
\(\mathbf{N}_d = -14.51 \text{ kN}, \mathbf{M}_d = 10.47 \text{ kNm}, \mathbf{V}_d = 14.23 \text{ kN} \)
Anschluss Voute-Träger
\(\mathbf{N}_{vd} = -14.51 \text{ kN}, \mathbf{M}_{vd} = 0.76 \text{ kNm}, \mathbf{V}_{vd} = 14.23 \text{ kN} \)
Anschluss Träger (links)
\(\mathbf{N}_z = 4.78 \text{ kN}, \mathbf{M}_z = 13.85 \text{ kNm}, \mathbf{V}_z = -17.60 \text{ kN} \)
Anschluss Träger (oben)
\(\mathbf{N}_c = 72.69 \text{ kN}, \mathbf{M}_c = -3.26 \text{ kNm}, \mathbf{V}_c = 10.63 \text{ kN} \)
Anschluss Träger (unter)
\(\mathbf{N}_c = 35.95 \text{ kN}, \mathbf{M}_c = -2.55 \text{ kNm}, \mathbf{V}_c = -3.71 \text{ kN} \)

Teilschnittgrößen
Schnittgrößen im Anschluss Slimblech-Träger:
\(\mathbf{M}_d = \mathbf{M}_d + \mathbf{N}_{d,ap} \cdot \tan(\alpha) \cdot \mathbf{V}_{d,ap} = 10.09 \text{ kNm} \)
\(\mathbf{N}_{bd} = -\mathbf{N}_{bd} \cdot \mathbf{z}_b + \mathbf{M}_d \cdot \mathbf{z}_b = 23.48 \text{ kN}, \mathbf{z}_b = 605.7 \text{ mm}, \mathbf{z}_{bd} = 284.8 \text{ mm} \)
\(\mathbf{N}_{bo} = (\mathbf{N}_d \cdot \mathbf{z}_b + \mathbf{M}_d \cdot \mathbf{z}_b) / \cos(\alpha) = 10.96 \text{ kN}, \mathbf{z}_o = 605.7 \text{ mm}, \mathbf{z}_{bo} = 320.8 \text{ mm} \)

Grundkomponente 1 wurde nicht berechnet !!
4.1.2. Anschlusstragfähigkeit

4.1.2.1. Biegetragfähigkeit

Abstand der Zug-Schraubenreihen vom Druckpunkt:
\[h_1 = 652.2 \text{ mm}, \ h_2 = 562.2 \text{ mm}, \ h_4 = 492.2 \text{ mm}, \ h_4 = 42.2 \text{ mm} \]

Tragfähigkeit je Schraubenreihe
Reihe 1: \(F_{\text{tr,Rd}} = 217.6 \text{ kN} \)
Reihe 2: \(F_{\text{tr,Rd}} = 195.2 \text{ kN} \)
Reihe 3: \(F_{\text{tr,Rd}} = 0.0 \text{ kN} \)
Reihe 4: \(F_{\text{tr,Rd}} = 0.0 \text{ kN} \)
\[\sum F_{\text{tr,Rd}} = 412.8 \text{ kN} \]

Mögliches Versagen durch Grundkomponente 4, 20

Tragfähigkeit der Flansche
\[\sum F_{\text{c,Rd}} = 1130.6 \text{ kN} \]

Biegetragfähigkeit
\[M_{\text{b,Rd}} = \sum (F_{\text{tr,Rd}} \cdot h_t) = 251.6 \text{ kNm} \]

Zugtragfähigkeit
\[N_{\text{z,Rd}} = \sum F_{\text{tr,Rd}} \cdot l = 749.9 \text{ kN} \]

Drucktragfähigkeit
\[N_{\text{p,Rd}} = \sum F_{\text{c,Rd}} = 1130.6 \text{ kN} \]

4.1.2.2. Abscher-/Lochleibungstragfähigkeit

Tragfähigkeit je Schraubenreihe
Reihe 1: \(F_{\text{w,Rd}} = 168.7 \text{ kN} \)
Reihe 2: \(F_{\text{w,Rd}} = 182.4 \text{ kN} \)
Reihe 3: \(F_{\text{w,Rd}} = 301.6 \text{ kN} \)
Reihe 4: \(F_{\text{w,Rd}} = 301.6 \text{ kN} \)
\[\sum F_{\text{w,Rd}} = 954.3 \text{ kN} \]

Abscher-/Lochleibungstragfähigkeit
\(V_{\text{l,Rd}} = \sum F_{\text{v,Rd}} = 954.3 \text{ kN} \)

4.1.2.3. Schubtragfähigkeit

Schubtragfähigkeit des Stirnblechs
Stirnblech: \(V_{\text{ep,Rd}} = 1474.09 \text{ kN} \)
Schweißnähte: \(F_{\text{w,Rd}} = 903.27 \text{ kN} \)
Schubtragfähigkeit des Stirnblechs: \(V_{\text{ep,Rd}} = F_{\text{w,Rd}} = 903.27 \text{ kN} \)

4.1.2.4. Gesamt
\[M_{\text{b,Rd}} = 251.6 \text{ kNm} \]
\[N_{\text{z,Rd}} = 749.9 \text{ kN} \]
\[N_{\text{p,Rd}} = 1130.6 \text{ kN} \]
\[V_{\text{l,Rd}} = 903.3 \text{ kN} \]
\[V_{\text{ep,Rd}} = 903.3 \text{ kN} \]

4.1.3. Nachweise

4.1.3.1. Nachweis der Anschlusstragfähigkeit mit der Komponentenmethode

Normalkraft: \[N_{\text{b,Rd}} = |N_{\text{d}} \cdot \cos(\alpha) + N_{\text{v}} \cdot \sin(\alpha)| = 9.56 \text{ kN} < 5\% N_{\text{p},\text{Rd}} = 156.37 \text{ kN} \Rightarrow \text{ Biegetragfähigkeit} \]
Biegemoment: \[M_{\text{ed}} = M_{\text{u}} - N_{\text{d}} \cdot z_{\text{bu}} = 14.51 \text{ kNm}, \ z_{\text{bu}} = 279.5 \text{ mm} \]
Querkraft: \[V_{\text{ed}} = |V_{\text{d}}| = 14.23 \text{ kN} \]
\[M_{\text{ed}}/M_{\text{v,Rd}} = 0.058 < 1 \text{ ok} \]
\[V_{\text{ep}}/V_{\text{l,Rd}} = 0.016 < 1 \text{ ok} \]
\[V_{\text{ed}}/V_{\text{ep,Rd}} = 0.016 < 1 \text{ ok} \]

4.1.3.2. Nachweis der Schweißnähte am Trägerprofil

Naht 1: Trägerflansch mit Zug außen
Nähte 2.3: Trägerflansch mit Zug innen
Naht 8: Trägerflansch mit Druck außen
Nähte 4.5: Trägersteg beidseitig
Nähte 6.7: Trägerflansch mit Druck innen
Berechnungsquerschnitt:
Bemessungsgrößen bezogen auf den Schwerpunkt des Profils:
$N_{Ed} = 14.51 \text{kN}$, $M_{V,Ed} = -10.47 \text{kNm}$, $V_{z,Ed} = 14.23 \text{kN}$

Querschnittswerte bezogen auf den Schwerpunkt des Linienquerschnitts:
$\Delta A_w = 83.78 \text{cm}^2$, $A_{w,0} = 43.46 \text{cm}^2$, $I_{w,0} = 209.4 \text{cm}^4$
$I_{w,0} = 47881.43 \text{cm}^4$, $I_{w,z} = 2922.18 \text{cm}^4$, $W_{w,t} = 106.46 \text{cm}^3$, $\Delta z_w = -18.3 \text{mm}$

Nachweise in den Endpunkten der Nähte:

Naht 1, Pkt. 0: $\sigma_{w,x} = 8.49 \text{N/mm}^2$ \quad $u_w = 0.033 < 1 \text{ ok}$
Naht 2, Pkt. 0: $\sigma_{w,x} = 8.20 \text{N/mm}^2$ \quad $u_w = 0.032 < 1 \text{ ok}$
Naht 4, Pkt. 0: $\sigma_{w,x} = 7.68 \text{N/mm}^2$ \quad $u_w = 0.034 < 1 \text{ ok}$
Naht 4, Pkt. 1: $\sigma_{w,x} = 4.20 \text{N/mm}^2$ \quad $u_w = 0.023 < 1 \text{ ok}$
Naht 6, Pkt. 0: $\sigma_{w,x} = 4.72 \text{N/mm}^2$ \quad $u_w = 0.019 < 1 \text{ ok}$
Naht 8, Pkt. 0: $\sigma_{w,x} = 5.07 \text{N/mm}^2$ \quad $u_w = 0.020 < 1 \text{ ok}$

Ergebnis:

Naht 4, Pkt. 0: $\sigma_{w,x} = 7.68 \text{N/mm}^2$ \quad $u_w = 0.034 < 1 \text{ ok}$

Max: $\sigma_{1,\text{w},Ed} = 12.22 \text{kN/cm}^2 < f_{w,\text{Ed}} = 36.00 \text{kN/cm}^2$,
$\sigma_{2,\text{w},Ed} = 0.54 \text{kN/cm}^2 < f_{w,\text{Ed}} = 25.92 \text{kN/cm}^2$ \quad $u_w = 0.034 < 1 \text{ ok}$

4.1.3.3. Nachweis der Stegsteifen

Drucksteife
$F_{c,Ed} = 10.85 \text{kN}$
Kräfte je Rippe
$F = 0.5 F_{c,Ed} \cdot \hat{(br-2-\tau_{w,0})}/h = 4.3 \text{kN}$, $H = F \cdot s_{b}/s_{h} = 1.5 \text{kN}$

Voraussetzung: Steifen nicht beulgefährdet: $c_t = 11.9 \cdot 10^{-3} < 30 \cdot 0 \Rightarrow Q$-Klasse 1 ≤ 2

Querschnitt am Flansch

Drucktragfähigkeit $N_{b,Ed} = (A_{f,0} / J_{MO}) = 282.00 \text{kN}$

Bemessungsgröße: $F_{Ed} = (F^2 + 3 \cdot H)^{1/2} = 5.1 \text{kN}$

$F_{Ed} < F_{Rd} = 282.0 \text{kN} \Rightarrow u = 0.018 < 1 \text{ ok}$

Querschnitt am Steg

Schubtragfähigkeit $V_{Rd} = 397.26 \text{kN}$

Bemessungsgröße: $F_{Ed} = F = 4.3 \text{kN}$

$F_{Ed} < F_{Rd} = 397.3 \text{kN} \Rightarrow u = 0.011 < 1 \text{ ok}$

Schweißnähte am Flansch

Bemessungsgrößen: $F_{Ed}(\sigma_{c}) = F / (2 \cdot b_{1}) = 0.22 \text{kN/cm}$, $F_{Ed}(\sigma_{p}) = H / (2 \cdot b_{1}) = 0.08 \text{kN/cm}$, $b_{1} = 100.0 \text{ mm}$

$\sigma_{1,\text{w},Ed} = 0.54 \text{kN/cm}^2 < f_{w,\text{Ed}} = 36.00 \text{kN/cm}^2$ \quad $u = 0.018 < 1 \text{ ok}$

$\sigma_{2,\text{w},Ed} = 0.54 \text{kN/cm}^2 < f_{w,\text{Ed}} = 25.92 \text{kN/cm}^2$ \quad $u = 0.021 < 1 \text{ ok}$

Schweißnähte am Steg

Bemessungsgröße: $F_{Ed}(\sigma_{p}) = F / (2 \cdot h_{1}) = 0.13 \text{kN/cm}$, $h_{1} = 172.0 \text{ mm}$

$\sigma_{1,\text{w},Ed} = 0.55 \text{kN/cm}^2 < f_{w,\text{Ed}} = 36.00 \text{kN/cm}^2$ \quad $u = 0.015 < 1 \text{ ok}$

Zugsteife
$F_{l,Ed} = 25.36 \text{kN}$

Kräfte je Rippe
$F = 0.5 F_{l,Ed} \cdot (br-2-r_{w,0})/h = 10.1 \text{kN}$, $H = F \cdot s_{b}/s_{h} = 3.6 \text{kN}$

Querschnitt am Flansch

Zugtragfähigkeit $N_{b,Ed} = 282.00 \text{kN}$

Bemessungsgröße: $F_{Ed} = (F^2 + 3 \cdot H)^{1/2} = 11.9 \text{kN}$

$F_{Ed} = 11.9 \text{kN} < F_{Rd} = 282.0 \text{kN} \Rightarrow u = 0.042 < 1 \text{ ok}$

Querschnitt am Steg

Schubtragfähigkeit $V_{Rd} = 397.26 \text{kN}$

Bemessungsgröße: $F_{Ed} = F = 10.1 \text{kN}$

$F_{Ed} < F_{Rd} = 397.3 \text{kN} \Rightarrow u = 0.026 < 1 \text{ ok}$

Schweißnähte am Flansch

Bemessungsgrößen: $F_{Ed}(\sigma_{c}) = F / (2 \cdot b_{1}) = 0.51 \text{kN/cm}$, $F_{Ed}(\sigma_{p}) = H / (2 \cdot b_{1}) = 0.18 \text{kN/cm}$, $b_{1} = 100.0 \text{ mm}$

$\sigma_{1,\text{w},Ed} = 1.49 \text{kN/cm}^2 < f_{w,\text{Ed}} = 36.00 \text{kN/cm}^2$ \quad $u = 0.041 < 1 \text{ ok}$

$\sigma_{2,\text{w},Ed} = 1.27 \text{kN/cm}^2 < f_{w,\text{Ed}} = 25.92 \text{kN/cm}^2$ \quad $u = 0.049 < 1 \text{ ok}$

Schweißnähte am Steg

Bemessungsgröße: $F_{Ed}(\sigma_{p}) = F / (2 \cdot h_{1}) = 0.29 \text{kN/cm}$, $h_{1} = 172.0 \text{ mm}$

$\sigma_{1,\text{w},Ed} = 1.28 \text{kN/cm}^2 < f_{w,\text{Ed}} = 36.00 \text{kN/cm}^2$ \quad $u = 0.035 < 1 \text{ ok}$
4.1.3.4. Elastischer Schubfeldnachweis

Stützensteg
Anforderungen an die Steifen: s. Nachweis der Stegsteifen
Anforderungen an das Schubfeld: Schubbeule: $h_p/l_p = 30.50 \leq 72/(\eta \cdot e) = 60.00$ \textbf{ok}

Schnittgrößen am Stegfeld (Statik-Vorzeichen):
$N_1 = -4.78$ kN, $M_1 = -13.66$ kNm, $V_1 = -17.60$ kN
$N_3 = -72.69$ kN, $M_3 = 3.26$ kNm, $V_3 = 10.63$ kN
$N_4 = 14.51$ kN, $M_4 = -10.59$ kNm, $V_4 = 14.23$ kN
$N_2 = -35.95$ kN, $M_2 = 2.55$ kNm, $V_2 = -3.71$ kN

Abmessungen des Schubfelds: $h_b = 305.8$ mm, $h_l = 328.4$ mm, $h_i = 164.4$ mm, $h_r = 590.1$ mm

Spannungen im Schubfeld:
$\tau_b = 30.3$ N/mm², $\tau_l = 27.7$ N/mm², $\tau_i = 93.0$ N/mm², $\tau_r = 7.1$ N/mm²

Nachweis des Schubfelds:
$max \tau_{Ed} = 93.0 \text{ N/mm}^2 < \tau_{Rd} = 135.7 \text{ N/mm}^2 \Rightarrow U = 0.685 < 1$ \textbf{ok}

4.1.3.5. Nachweiseignung

Maximale Ausnutzung: $max U = 0.685 < 1$ \textbf{ok}

4.2. Anschluss links

4.2.1. Bemessungsgrößen

Knotenschnittgrößen Anschluss Anschluss 1 zur Anschlussebene Teilschnittgrößen

Neigungswinkel: $\alpha_b = \alpha_v = \alpha = 0^\circ$
$\alpha_{b2} = 0.00^\circ$, $\alpha_{v2} = 35.00^\circ \Rightarrow \alpha_2 = (\alpha_{b2}+\alpha_{v2})/2 = 17.50^\circ$

Abstände: $e_1 = 135.0$ mm, $e_3 = 298.2$ mm, $e_2 = 298.2$ mm, $e_5 = 135.0$ mm, $e_7 = 340.8$ mm

Schnittgrößen senkrecht zu den Anschlussebenen

Anschluss Träger (rechts)
$N_N = 4.78$ kN, $M_N = 13.98$ kNm, $V_N = 17.60$ kN

Anschluss Träger (links)
$N_N = -14.51$ kN, $M_N = 10.58$ kNm, $V_N = -14.23$ kN

Anschluss Stütze (unter)
$N_N = 72.69$ kN, $M_N = 3.26$ kNm, $V_N = -10.63$ kN

Anschluss Stütze (oben)
$N_N = 35.95$ kN, $M_N = 2.55$ kNm, $V_N = 3.71$ kN

Teilschnittgrößen

$N_{b1} = -N_N z_{bu} z_b + M_N z_b = 75.19$ kN, $z_b = 180.0$ mm, $z_{bu} = 90.0$ mm
$N_{b2} = N_N z_{bo} z_b + M_N z_b = 79.97$ kN, $z_b = 180.0$ mm, $z_{bo} = 90.0$ mm

Grundkomponente 1 wurde nicht berechnet !!

4.2.2. Anschlusstragfähigkeit

4.2.2.1. Biegetragfähigkeit

Abstand der Zugkraft vom Druckpunkt: $z = 180.0$ mm

Tragfähigkeit
$F_{Rd} = 335.1$ kN

Tragfähigkeit der Flansche
$\Sigma F_{C,Rd} = 670.2$ kN

Biegetragfähigkeit
$M_{L,Rd} = F_{Rd} \cdot z = 60.3$ kNm

Zugtragfähigkeit
$N_{L,Rd} = F_{L,Rd} = 387.9$ kN

Drucktragfähigkeit
$N_{C,Rd} = \Sigma F_{C,Rd} = 670.2$ kN
4.2.3. Nachweise

4.2.3.1. Nachweis der Anschlusstragfähigkeit mit der Komponentenmethode

Normalkraft: \(N_{\text{Ed}} = N_{\text{Ed}} = 4.78 \, \text{kN} < 5\% N_{\text{p,rd}} = 63.25 \, \text{kN} \Rightarrow \text{Biegetragfähigkeit} \)

Biegemoment: \(M_{\text{Ed}} = M_a \cdot N_{\text{Ed}, 2bu} = 13.59 \, \text{kNm}, \quad z_{bu} = 90.0 \, \text{mm} \)

Querkraft: \(V_{\text{Ed}} = |V_d| = 17.60 \, \text{kN} \)

\(M_{\text{Ed}}/M_{\text{p,rd}} = 0.224 < 1 \, \text{ok} \)

4.2.3.2. Nachweis der Schweinähte am Trägerprofil

Naht 1: Trägerflansch mit Zug außen
Naht 2: Trägerflansch mit Zug außen
Naht 8: Trägerflansch mit Druck außen
Naht 2: Trägerflansch mit Druck außen
Naht 3: ziehe Naht 2
Naht 4: ziehe Naht 4
Naht 5: ziehe Naht 4
Naht 6: ziehe Naht 6
Naht 7: ziehe Naht 6
Naht 8: ziehe Naht 8

Berechnungsquerschnitt:

Naht 1: \(a_w = 4.0 \, \text{mm} \) \(l_w = 200.0 \, \text{mm} \)
Naht 2: \(a_w = 4.0 \, \text{mm} \) \(l_w = 78.8 \, \text{mm} \)
Naht 3: ziehe Naht 2
Naht 4: \(a_w = 4.0 \, \text{mm} \) \(l_w = 134.0 \, \text{mm} \)
Naht 5: ziehe Naht 4
Naht 6: \(a_w = 4.0 \, \text{mm} \) \(l_w = 78.8 \, \text{mm} \)
Naht 7: ziehe Naht 6
Naht 8: \(a_w = 4.0 \, \text{mm} \) \(l_w = 200.0 \, \text{mm} \)

Bemessungsgrößen bezogen auf den Schwerpunkt des Profils:

\(N_{\text{Ed}} = -4.78 \, \text{kN}, \quad M_{\text{Ed}} = -13.98 \, \text{kNm}, \quad V_{\text{Ed}} = 17.60 \, \text{kN} \)

Querschnittswerte bezogen auf den Schwerpunkt des Linienquerschnitts:

\(A_w = 39.32 \, \text{cm}^2, \quad A_{cw} = 10.72 \, \text{cm}^2, \quad \Sigma l_w = 98.3 \, \text{cm} \)

\(l_{w,1} = 2514.76 \, \text{cm}^2, \quad l_{w,2} = 1062.88 \, \text{cm}^2, \quad W_{w,1} = 43.06 \, \text{cm}^2, \quad \Delta l_w = 0.0 \, \text{mm} \)

Nachweise in den Endpunkten der Nähte:

Naht 1, Pkt. 0: \(\sigma_{\text{w,Ed}} = 51.54 \, \text{N/mm}^2 \) \(\Rightarrow U_w = 0.202 < 1 \, \text{ok} \)
Naht 2, Pkt. 0: \(\sigma_{\text{w,Ed}} = 45.99 \, \text{N/mm}^2 \) \(\Rightarrow U_w = 0.181 < 1 \, \text{ok} \)
Naht 4, Pkt. 0: \(\sigma_{\text{w,Ed}} = 35.99 \, \text{N/mm}^2 \) \(\tau_{w,z} = 16.42 \, \text{N/mm}^2 \) \(\Rightarrow U_w = 0.162 < 1 \, \text{ok} \)
Naht 5, Pkt. 1: \(\sigma_{\text{w,Ed}} = -38.42 \, \text{N/mm}^2 \) \(\tau_{w,z} = 16.42 \, \text{N/mm}^2 \) \(\Rightarrow U_w = 0.170 < 1 \, \text{ok} \)
Naht 6, Pkt. 0: \(\sigma_{\text{w,Ed}} = -48.42 \, \text{N/mm}^2 \) \(\Rightarrow U_w = 0.190 < 1 \, \text{ok} \)
Naht 7, Pkt. 0: \(\sigma_{\text{w,Ed}} = -53.97 \, \text{N/mm}^2 \) \(\Rightarrow U_w = 0.212 < 1 \, \text{ok} \)

Ergebnis:

Naht 8, Pkt. 0: \(\sigma_{\text{w,Ed}} = -53.97 \, \text{N/mm}^2 \)

\(\sigma_{\text{w}, Ed} = 7.83 \, \text{kN/cm}^2 < f_{w,d} = 36.00 \, \text{kN/cm}^2 \)

\(\sigma_{\text{w}, Ed} = 3.82 \, \text{kN/cm}^2 < f_{\text{w,d}} = 25.92 \, \text{kN/cm}^2 \Rightarrow U_w = 0.212 < 1 \, \text{ok} \)

4.2.3.3. Nachweis der Stegsteifen

Drucksteife

\(F_{\text{Ed}} = 60.61 \, \text{kN} \)

Kräfte je Rippe

\(F = 0.5 \, F_{\text{Ed}} \cdot (b - 2 \cdot r_{\text{t-w}})/b_t = 32.2 \, \text{kN}, \quad H = F \cdot e/r_{\text{eh}} = 11.4 \, \text{kN} \)

Voraussetzung: Steifen nicht baugefährdet: \(\alpha t = 11.3 < 35 \% \Rightarrow \text{Q-Klasse 1} \leq 2 \, \text{ok} \)

Querschnitt am Flansch

Drucktragfähigkeit \(N_{\text{p,rd}} = (A_{\text{f}})/\gamma_{\text{MO}} = 282.00 \, \text{kN} \)

Bemessungsgröße: \(F_{\text{Ed}} = (F + 3\, H^2)/2 = 37.8 \, \text{kN} \)

\(F_{\text{Ed}} = 37.8 \, \text{kN} < F_{\text{Ed}} = 282.0 \, \text{kN} \Rightarrow U = 0.134 < 1 \, \text{ok} \)

Querschnitt am Steg

Schubtragfähigkeit \(V_{\text{rd}} = 397.26 \, \text{kN} \)

Bemessungsgröße: \(F_{\text{Ed}} = 32.2 \, \text{kN} \)

\(F_{\text{Ed}} = 32.2 \, \text{kN} < F_{\text{Ed}} = 397.3 \, \text{kN} \Rightarrow U = 0.081 < 1 \, \text{ok} \)

Schweinähte am Flansch

Bemessungsgrößen:

\(F_{\text{Ed}(1)} = F/(2-b_1) = 1.61 \, \text{kN/cm}, \quad F_{\text{Ed}(2)} = H/(2-b_1) = 0.57 \, \text{kN/cm}, \quad b_1 = 100.0 \, \text{mm} \)

\(\sigma_{\text{w}, Ed} = 4.72 \, \text{kN/cm}^2 < f_{w,d} = 36.00 \, \text{kN/cm}^2 \Rightarrow U = 0.131 < 1 \, \text{ok} \)

\(\sigma_{\text{w}, Ed} = 4.03 \, \text{kN/cm}^2 < f_{w,d} = 25.92 \, \text{kN/cm}^2 \Rightarrow U = 0.155 < 1 \, \text{ok} \)

Schweinähte am Steg

Bemessungsgröße: \(F_{\text{Ed}(3)} = F/(2-b_1) = 0.94 \, \text{kN/cm}, \quad b_1 = 172.0 \, \text{mm} \)

\(\sigma_{\text{w}, Ed} = 4.05 \, \text{kN/cm}^2 < f_{w,d} = 36.00 \, \text{kN/cm}^2 \Rightarrow U = 0.113 < 1 \, \text{ok} \)

Zugsteife

\(F_{\text{Ed}} = 75.83 \, \text{kN} \)

Kräfte je Rippe

\(F = 0.5 \, F_{\text{Ed}} \cdot (b - 2 \cdot r_{\text{t-w}})/b_t = 30.3 \, \text{kN}, \quad H = F \cdot e/r_{\text{eh}} = 10.7 \, \text{kN} \)

Querschnitt am Flansch
Zugtragfähigkeit $N_{Rd} = 282.00 \text{ kN}$
Bemessungsgröße: $F_{Ed} = (F^2 + 3H)^{1/2} = 35.5 \text{ kN}$
$F_{Ed} = 35.5 \text{ kN} < F_{Rd} = 282.0 \text{ kN} \implies U = 0.126 < 1 \text{ ok}$
Querschnitt am Steg
Schubtragfähigkeit $V_{Rd} = 397.26 \text{ kN}$
Bemessungsgröße: $F_{Ed} = F = 30.3 \text{ kN}$
$F_{Ed} = 30.3 \text{ kN} < F_{Rd} = 397.3 \text{ kN} \implies U = 0.076 < 1 \text{ ok}$
Schweißnähte am Flansch
Bemessungsgrößen: $F_{Ed}(v_0) = F / (2 \cdot b_1) = 1.52 \text{ kN/cm}, \quad F_{Ed}(\varphi_0) = H / (2 \cdot b_1) = 0.53 \text{ kN/cm}, \quad b_1 = 100.0 \text{ mm}$
$s_{1,w,Ed} = 4.44 \text{ kN/cm}^2 < f_{w,d} = 36.00 \text{ kN/cm}^2 \implies U = 0.123 < 1 \text{ ok}$
$s_{2,w,Ed} = 3.79 \text{ kN/cm}^2 < f_{w,d} = 25.92 \text{ kN/cm}^2 \implies U = 0.146 < 1 \text{ ok}$
Schweißnähte am Steg
Bemessungsgröße: $F_{Ed}(\varphi_0) = F / (2 \cdot h_1) = 0.88 \text{ kN/cm}, \quad h_1 = 172.0 \text{ mm}$
$s_{1,w,Ed} = 3.82 \text{ kN/cm}^2 < f_{w,d} = 36.00 \text{ kN/cm}^2 \implies U = 0.106 < 1 \text{ ok}$

4.2.3.4. Elastischer Schubfeldnachweis

Stützensteg
Anforderungen an die Steifen: s. Nachweis der Stegsteifen
Anforderungen an das Schubfeld: Schubbeulen: $\delta_0 = 30.50 \leq \frac{72}{(1.5 \phi)} = 60.00 \text{ ok}$
Schnittgrößen am Stegfeld (Statik-Vorzeichen):
$N_1 = 14.51 \text{ kN}, \quad M_1 = -10.71 \text{ kNm}, \quad V_1 = -14.23 \text{ kN}$
$N_3 = 72.89 \text{ kN}, \quad M_4 = -3.26 \text{ kNm}, \quad V_3 = -10.63 \text{ kN}$
$N_4 = -4.78 \text{ kN}, \quad M_4 = -14.08 \text{ kNm}, \quad V_4 = 17.60 \text{ kN}$
$N_2 = -35.95 \text{ kN}, \quad M_2 = -2.55 \text{ kNm}, \quad V_2 = 3.71 \text{ kN}$
Abmessungen des Schubfelds: $h_b = 304.1 \text{ mm}, \quad h_t = 330.3 \text{ mm}, \quad h_i = 590.1 \text{ mm}, \quad h_r = 164.4 \text{ mm}$
Spannungen im Schubfeld:
$\tau_b = 30.5 \text{ N/mm}^2, \quad \tau_i = 28.0 \text{ N/mm}^2, \quad \tau_t = 7.2 \text{ N/mm}^2, \quad \tau_r = 93.7 \text{ N/mm}^2$
Nachweis des Schubfelds:
$max \tau_{Ed} = 93.7 \text{ N/mm}^2 < \tau_{Rd} = 135.7 \text{ N/mm}^2 \implies U = 0.691 < 1 \text{ ok}$

4.2.3.5. Nachweisergebnis
Maximale Ausnutzung: $max U = 0.691 < 1 \text{ ok}$