1. input report

steel grade

steel grade S235

bolts

bolt class 8.8, bolt size M16, normal wrench size

shear plane passes through the unthreaded portion of the bolt

beam parameters

section IPE240

slope angle of section about the horizontal axis $\alpha_b = -7.40^\circ$

verification parameters

bolted end-plate connection:

thickness $t_p = 20.0$ mm, width $b_p = 120.0$ mm, length $l_p = 327.0$ mm

projections $h_{p,o} = 10.0$ mm, $h_{p,u} = 75.0$ mm
bolts in connection:
3 bolt-rows with 2 bolts
d of these 1 bolt-row top in tension (row 1)
 and 3 bolt-rows for shear transfer top (rows 1-3)
d of these 2 bolt-rows bottom in tension (rows 2-3)
 and 1 bolt-row for shear transfer bottom (row 3)
centre distance of the bolts to the lateral edge of the end-plate \(e_2 = 26.0 \text{ mm} \)
centre distance of the first bolt-row to the upper edge of the end-plate (end row) \(e_0 = 60.0 \text{ mm} \)
centre distance of the last bolt-row to the bottom edge of the end-plate (end row) \(e_4 = 35.0 \text{ mm} \)
centre distance of the bolt-rows from each other \(p_{1.2} = 142.0 \text{ mm}, \ p_{2.3} = 90.0 \text{ mm} \)
welds at the connection point:
 beam flange top: fillet weld, weld thickness \(a = 5.0 \text{ mm}, \ \text{angle} \ \varphi = 97^\circ \)
 beam web: fillet weld, weld thickness \(a = 3.0 \text{ mm} \)
 beam flange bottom: fillet weld, weld thickness \(a = 5.0 \text{ mm}, \ \text{angle} \ \varphi = 83^\circ \)

Internal forces and moments in the intersection point of system axes

\[\begin{align*}
Lk 1: \quad N_{j,b,Ed} &= -24.30 \text{ kN} \quad M_{j,b,Ed} = 55.00 \text{ kNm} \quad V_{j,b,Ed} = 3.20 \text{ kN}
\end{align*} \]

Partial safety factors for material
resistance of cross-sections \(\gamma_{MO} = 1.00 \)
resistance of members in stability failure \(\gamma_{M1} = 1.10 \)
resistance of bolts, welds, plates in bearing \(\gamma_{M2} = 1.25 \)
presstress of high strength bolts \(\gamma_{M7} = 1.10 \)

Check of data

OK

distances between bolt-rows at end-plate

<table>
<thead>
<tr>
<th></th>
<th>(e_2 = 26.0 \text{ mm})</th>
<th>(e_2 = 26.0 \text{ mm} < 41 + 40 \text{ mm} = 120.0 \text{ mm})</th>
</tr>
</thead>
<tbody>
<tr>
<td>horizontal:</td>
<td>(p_2 = 68.0 \text{ mm})</td>
<td>(p_2 = 68.0 \text{ mm} < \min(141, 200) \text{ mm} = 200.0 \text{ mm})</td>
</tr>
<tr>
<td>vertical:</td>
<td>(e_1 = 60.0 \text{ mm})</td>
<td>(e_1 = 60.0 \text{ mm} < 41 + 40 \text{ mm} = 120.0 \text{ mm})</td>
</tr>
<tr>
<td>vertical:</td>
<td>(p_1 = 142.0 \text{ mm})</td>
<td>(p_1 = 142.0 \text{ mm} < \min(141, 200) \text{ mm} = 200.0 \text{ mm})</td>
</tr>
<tr>
<td>vertical:</td>
<td>(e_1 = 35.0 \text{ mm})</td>
<td>(e_1 = 35.0 \text{ mm} < 41 + 40 \text{ mm} = 120.0 \text{ mm})</td>
</tr>
</tbody>
</table>

Notes

there are several basic components selected which perhaps do not ensure the total loading capacity of the joint.
no verification for cross-sections.
no verification for welds within the connection.

2. Lk 1

2.1. Design values

Knotenschnittgrößen periphery connection\(\perp \) zur connection plane partial internal forces and moments

\[\begin{align*}
N_{b,t} &= 24.51 \text{ kN}, \quad M_{b,t} = -55.00 \text{ kNm}, \quad V_{b,t} = 0.04 \text{ kN}
\end{align*} \]

negative internal moment \(M_d \Rightarrow \text{mirrored model (} \alpha_{b} = \alpha_{t} = \alpha = 7.40^\circ \)\)

\[\begin{align*}
N_{b,t} &= 24.51 \text{ kN}, \quad M_{b,t} = 55.00 \text{ kNm}, \quad V_{b,t} = -0.04 \text{ kN}
\end{align*} \]

Partial internal forces and moments referring to the mirrored model

internal forces and moments in the end-plate beam: \(M_d = M_{b,t} + N_{b,t} \tan(\alpha) - V_{b,t} \tan(\alpha) = 55.06 \text{ kNm} \)

\[\begin{align*}
N_{b,t} &= (-N_d z_{b} - M_d z_{b}^2) / \cos(\alpha_{b}) = 226.85 \text{ kN}, \quad z_{b} = 232.1 \text{ mm}, \quad z_{b} = 116.1 \text{ mm}
\end{align*} \]

\[\begin{align*}
N_{b,c} &= (N_d z_{bo} + M_d z_{bo}^2) / \cos(\alpha_{b}) = 251.56 \text{ kN}, \quad z_{b} = 232.1 \text{ mm}, \quad z_{b} = 116.1 \text{ mm}
\end{align*} \]

Slope angle: \(\alpha_{b} = \alpha_{t} = \alpha = -7.40^\circ \)
2.2. basic components

2.2.1. Gk 5: end-plate in bending

extended part of end-plate

in the extended part of the end-plate only one bolt-row is considered \((m_0 - 1)\).

effective length of the T-stub flange (end-plate):

in mode 1: \(\ell_{eff,1} = \ell_{left,1} = \min(\ell_{left,nc, left,cp}) = 60.0\) mm, \(\ell_{left,cp} = 159.8\) mm

in mode 2: \(\ell_{eff,2} = \ell_{left,2} = \ell_{left,nc} = 60.0\) mm

tension resistance of the T-stub flange:

in mode 1+2: \(\Sigma F_{L,Rd} = \left(0.25 \cdot \ell_{eff,1} \cdot f_y \right) / \gamma_M = 1.41\) kNm

in mode 3: \(\Sigma F_{L,Rd} = 2 \cdot n_b \cdot F_{L,Rd} = 180.86\) kN

\(L_b = 56.0\) mm \(\leq 116.4\) mm \(\Rightarrow\) \(L_b^* = \) plying forces may develop

mode 1: complete yielding of the T-stub flange
\(F_{T,1,Rd} = \left(4 \cdot M_{p1,1,Rd} / \ell_{left,1,1,Rd} \right) / \gamma_M = 164.30\) kN

mode 2: bolt failure simultaneously with yielding of the T-stub flange
\(F_{T,2,Rd} = (2 \cdot M_{p1,2,Rd} + n \cdot \Sigma F_{T,Rd}) / (m + n) = 132.00\) kN

mode 3: bolt failure
\(F_{T,3,Rd} = \Sigma F_{T,Rd} = 180.86\) kN

tension resistance of the T-stub flange: \(F_{T,Rd} = \min(F_{T,1,Rd}, F_{T,2,Rd}, F_{T,3,Rd}, 132.00\) kN

resistance of a weld (req.1): \(f_{w,1,d} = f_u / (\gamma_{M}) = 360.0\) N/mm^2

tension resistance of welds: \(F_{T,w,Rd} = 2f_{w,1,d} \cdot \ell_{left} = 152.74\) kN \((\geq 132.00\) kN, not decisive)

resistance and effective length of end-plate in bending (projection)
\(F_{T,eq,Rd,1} = 132.00\) kN, \(\ell_{left,1} = 60.0\) mm

part of end-plate between beam flanges

equivalent T-stub flange (each individual bolt-row):

row 2:

effective length of the T-stub flange (end-plate):

in mode 1: \(\ell_{eff,1} = \ell_{left,1} = \min(\ell_{left,nc, left,cp}) = 147.7\) mm, \(\ell_{left,cp} = 172.8\) mm

in mode 2: \(\ell_{eff,2} = \ell_{left,2} = \ell_{left,nc} = 147.7\) mm

tension resistance of the T-stub flange:

in mode 1+2: \(\Sigma F_{L,Rd} = \left(0.25 \cdot \ell_{eff,1} \cdot f_y \right) / \gamma_M = 3.47\) kNm

in mode 3: \(\Sigma F_{L,Rd} = 2 \cdot n_b \cdot F_{L,Rd} = 180.86\) kN

\(L_b = 56.0\) mm \(> 24.3\) mm \(\Rightarrow\) no plying forces

mode 1 and 2: complete yielding of the T-stub flange and possibly coincident bolt failure
\(F_{T,1,2,Rd} = (2 \cdot M_{p1,1,Rd} / \ell_{left,1,1,Rd}) = 252.33\) kN

mode 3: bolt failure
\(F_{T,3,Rd} = \Sigma F_{T,Rd} = 180.86\) kN

tension resistance of the T-stub flange: \(F_{T,Rd} = \min(F_{T,1,2,Rd}, F_{T,3,Rd}) = 180.86\) kN

resistance of a weld (req.1): \(f_{w,1,d} = f_u / (\gamma_{M}) = 360.0\) N/mm^2

tension resistance of welds: \(F_{T,w,Rd} = 2f_{w,1,d} \cdot \ell_{left} = 225.55\) kN \((\geq 180.86\) kN, not decisive)

resistances and effective lengths of end-plate in bending (per bolt-row):
\(F_{eq,Rd,2} = 180.86\) kN, \(\ell_{left,2} = 147.7\) mm

2.3. verifications

2.3.1. verification of the connection capacity with partial internal forces and moments

tension force in the bolt-rows:
\(N_{b,t} = (-N_d \cdot z_{bu} + M_u) / z = 225.02\) kN, \(z = z_{eq} = 232.1\) mm, \(z_{bu} = 113.5\) mm

Gk 5: \(F_{Ed} = \Sigma F_{T,eq,Rd,i} = 303.4\) kN, \(F_{Ed} = N_{b,t} = 225.02\) kN
\(F_{Ed} = 225.0\) kN \(< F_{Rd} = 303.4\) kN \(\Rightarrow U = 0.742 < 1\) \(\text{ok}\)

utilization partial internal forces and moments \(U_{Gk} = 0.742 < 1\) \(\text{ok}\)
2.3.2. verification result

maximum utilization: max $U = 0.742 < 1 \text{ ok}$

3. final result

utilization of the connection

<table>
<thead>
<tr>
<th>L_k</th>
<th>U_j</th>
<th>Gleichgewicht</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.742*</td>
<td>24.51 kN 0.04 kN 55.00 kNm</td>
</tr>
</tbody>
</table>

U_j: utilization of the connection; tolerances of equilibrium 1 kN / 1 kNm

*) maximum utilization

maximum utilization: $\text{max } U = 0.742 < 1 \text{ ok}$

verification succeeded