4H-EC3FP Version: 5/2013-1a

Stahlstützenfuß mit Fußplatte

Stahlnachweise nach DIN EN 1993-1:2010-12 mit NA-Deutschland

Draufsicht Fußplatte Maßstab 1:25

Stützenquerschnitt

frei definiertes Profil: Braemer und Kirs, der Güte S235 verdreht mit 90.0°

Fußplatte

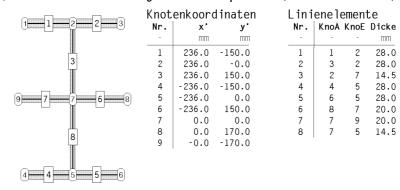
 $b_x = 750 \text{ mm}$ $b_y = 420 \text{ mm}$ t = 35 mm, der Güte S235

Mörtel fuge

 $t_F = 30 \text{ mm}$

Untergrund/Bettung

Entsprechend des Betons C25/30


Schubdübe1

genormtes Profil: HE160M, der Güte S235 (um 90° gedreht)

Anker

4 Anker, FK 5.6, M22 mit einer Länge von 600 mm Randabstände $a_x/a_y = 50/50 \text{ mm}$

Querschnittsbeschreibung des Stützenprofils (Braemer und Kirs)

1. Belastung

Bemessungswerte der Stützenlast 1.1.

Angriffspunkt im Schwerpunkt der Stütze

LK	Nst,d kN	Hx,St,d	Hy,St,d	Mx,St,d kNm	M y,st,d kNm	Bemessungssit.
	IXIV	IXIN	ININ	INTAIL	KIMII	
1	2557.00	38.30	4.20	0.00	0.00	ständig
2	-177.00	1.50	-157.60	0.00	0.00	ständig
3	1950.00	-70.60	-3.20	0.00	0.00	ständig
4	-174.00	-4.00	-172.10	0.00	0.00	ständig

2. **Nachweis**

Materialsicherheitsbeiwerte 2.1.

Bemessungssit.	γM0	γM2	γc
ständig	1.10	1.10	1.50

2.2. Schweißnaht zwischen Stützenschaft und Fußplatte

Bemessung nach dem vereinfachten Verfahren entsprechend Abschnitt 4.5.3.3

 $F_{w,Ed} = \sigma_{w,v} \cdot a_w$ $\begin{aligned} F_{w,Rd} &= f_{vw,d} \cdot a_w \\ f_{vw,d} &= (f_u/3^{0.5})/(\beta_w \cdot \gamma_{m2}) \end{aligned}$ $U = F_{w,Ed}/F_{w,Rd}$

Die Verbindung wird mit einer umlaufenden Kehlnaht ausgeführt. Die Normalkraft wird zu 100 % durch die Schweißnaht übertragen.

LK	aw	σw,max	τw,max	σw,v,max	Fw,Ed	Fw,Rd	U
	mm	kN/cm²	kN/cm²	kN/cm²	kN/cm	kN/cm	-
1	6	19.75	-0.34	19.75	11.85	14.17	0.84
2	6	-3.55	2.16	3.56	2.13	14.17	0.15
3	6	15.18	-0.56	15.18	9.11	14.17	0.64
4	6	-3.74	2.38	3.75	2.25	14.17	0.16

Maximale Nahtdicke $a_{w,max} = 6 \text{ mm}$

Maximale Ausnutzung U = 0.84 < 1.00

aw - Schweißnahtdicke $\sigma_{w,max}$ - max. Normalspannung in der Schweißnaht $\tau_{w,max}$ - max. Schubspannung in der Schweißnaht σw,v,max - max. Vergleichsspannung in der Schweißnaht Fw,Ed - Einwirkende Kraft auf die Schweißnaht je Längeneinheit Fw,Rd - Tragfähigkeit der Schweißnaht je Längeneinheit U - Ausnutzung

2.3. FE-Berechnung

Die Berechnung der Pressungen unter der Fußplatte und der maßgebenden Schnittgrößen in der Fußplatte erfolgt durch eine FEM-Berechnung mit Steifezifferverfahren. Die Anfangsbettung der Platte ergibt sich aus dem E-Modul des Betons unter der Fußplatte. Für die Flächenbettung gilt Zugfederausschaltung. Die Anker werden durch Punktfedern berücksichtigt, die nur auf Zug wirken.

Die Platte wird in 20 Elemente in X-Richtung und 24 Elemente in Y-Richtung eingeteilt. Die Betonpressung wird begrenzt auf die zulässige Teilflächenpressung mit lim $\sigma_{\text{C,d}} = f_{\text{Rd,u}}$. Die Ersatzfeder für die Anker wird angesetzt mit $c = E \cdot A/l = 1060.50 \text{ kN/cm}$.

2.3.1. Spannungen in der Fußplatte (Elast.-Plast.)

Schnittgrößen

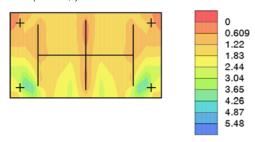
L	LK XFp YFp		m _{XX} myy		Mxy	٧x	Vy	
		cm	cm	kNcm/cm	kNcm/cm	kNcm/cm	kN/cm	kN/cm
	1	65.6	20.1	11.17	5.67	0.01	-4.22	0.02
	2	9.4	6.1	-15.64	-5.61	-4.01	-6.34	-1.63
	3	9.4	21.9	8.60	4.36	0.01	3.25	-0.02
	4	65.6	6.1	-15.93	-5.72	4.09	6.47	-1.66

Spannungen und Ausnutzungen

 $\sigma_{\text{PI,V}} = (\sigma_{\text{X}}^2 + \sigma_{\text{Y}}^2 - \sigma_{\text{X}} \cdot \sigma_{\text{Y}} + 3 \cdot (\tau_{\text{X}\text{Y}}^2 + \tau_{\text{X}\text{Z}}^2 + \tau_{\text{Y}\text{Z}}^2))^{0.5}$

 $\sigma Rd = f_y/\gamma M0$

 $U = \sigma PI, V/\sigma Rd$


LK	XFp	УFр	σ Ρ1, V	σRd	U
	cm	cm	kN/cm²	kN/cm²	-
1	65.6	20.1	3.79	21.36	0.18
2	9.4	6.1	5.98	21.36	0.28
3	9.4	21.9	2.92	21.36	0.14
4	65.6	6.1	6.09	21.36	0.29

Maximale Ausnutzung U = 0.29 < 1.00

 $x_{Fp}/y_{Fp} \text{ - Koordinaten auf der Fußplatte } \quad m_{xx}/m_{yy} \text{ - Momente } \quad m_{xy} \text{ - Drillmoment } \quad v_x/v_y \text{ - Querkraft}$ $\sigma_{PI,V}$ - plastische Vergleichsspannung σ_{Rd} - Grenznormalspannung U - Ausnutzung

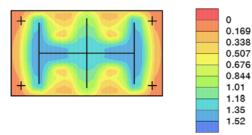
Spannungsverteilung - σ_{P1,V} [kN/cm²]

LK 4 (max σPI,V)

2.3.2. Betonpressung unter der Fußplatte

Der zulässige Anteil der Druckfläche mit Betonpressungen größer als der Bemessungswert der Betondruckfestigkeit (fcd) beträgt 30%.

LK		ADruck	σc,max	σc,m	fcd	U	$\sigma_{c}(A_{D})>f_{cd}$
	kN/cm²	cm ²	kN/cm ²	kN/cm ²	kN/cm ²	-	%
1	4.25	3150.0	1.52	0.81	1.42	0.57	13.54
2	4.25	_	-	_	1.42	0.00	0.00
3	4.25	3150.0	1.17	0.62	1.42	0.44	0.00
4	4.25	-	-	-	1.42	0.00	0.00


Maximale Ausnutzung U = 0.57 < 1.00

Maximaler Anteil der Betonpressung mit $\sigma_c > f_{cd} = 13.54 < 30.00$

ADruck - Fläche mit Betonpressungen oc.max - maxmimale Betonpressung oc.m - mittlere Betonpressung U - Ausnutzung

Pressungsverteilung [kN/cm²]

LK 1 (max σ_{c,m})

2.3.3. Ankerzugkräfte

 $F_{t,Rd} = k2 \cdot f_{ub} \cdot A_s / \gamma M2$ $U = F_{t,Ed,max} / F_{r,Rd}$

Spannungsquerschnitt für M22: $A_s = 3.03 \text{ cm}^2$ Es werden keine Senkschrauben verwendet: k2 = 0.90

LK	Ft,Ed,1	Ft,Ed,2	Ft,Ed,3	Ft,Ed,4	Ft,Rd	Umax
	kN	kN	kΝ	kN	kΝ	-
1					123.95	0.00
2	24.68	24.50	64.00	63.82	123.95	0.52
3					123.95	0.00
4	21.79	22.28	64.72	65.21	123.95	0.53

Maximale Ausnutzung U = 0.53 < 1.00

 $f_{ub} - Zugfestigkeit \ des \ Schraubenwerkstoffes \qquad F_{t,Ed,i} - Zugkraft \ des \ Ankers \qquad F_{t,Rd} - Grenzzugkraft \ der \ Ankers \ A$ U_{max} - max. Ausnutzung

2.4. Schubdübel zur Einleitung der Horizontalkraft in das Fundament

Gesamtlänge 1 = 13.0 cmLänge im Beton $l_c = 10.0$ cm

2.4.1. Betonpressung

 $\sigma_{C} = V_{Ed}/(I_{C} \cdot b)$ $\sigma_{c,Steg,cal} = \sigma_{c,Steg} \cdot f_{\sigma,Steg}$

 $U = \sigma_{c,max}/f_{cd}$

Zusätzlicher Sicherheitsfaktor bei Betonpressungen über den Steg $f_{\sigma, \text{Steg}} = 1.1$

LK	V Ed,Flansch	V Ed,Steg	σc,Flansch	σc,Steg	σc,Steg,cal	fcd	U
	kN	kN	N/mm²	N/mm²	N/mm²	N/mm²	-
1	38.30	4.20	4.61	0.63	0.69	14.17	0.33
2	1.50	157.60	0.09	11.76	12.94	14.17	0.91
3	70.60	3.20	8.51	0.48	0.53	14.17	0.60
4	4.00	172.10	0.24	12.84	14.13	14.17	1.00

Maximale Ausnutzung U = 1.00 = 1.00

 $\sigma_{C,Flansch} \text{ - Betonpressung \"{u}ber den Flansch} \qquad \sigma_{C,Steg} \text{ - Betonpressung \"{u}ber den Steg} \qquad \text{U - Ausnutzung}$

2.4.2. Spannungen am Anschluss der Fußplatte

 $\sigma_{V,Ed} = (\sigma_{Ed}^2 + 3 \cdot \tau_{Ed}^2)^{0.5}$ $\sigma_{Rd} = f_{V}/\gamma_{M0}$ $\mathbf{u} = \sigma_{V,Ed}/\sigma_{Rd}$

LK	M _x ,Ed	My,Ed	σEd	τEd	σv,Ed	σRd	U
	kNcm	kNcm	kN/cm²	kN/cm²	kN/cm²	kN/cm²	-
1	23.10	-210.65	-0.48	-1.78	3.08	21.36	0.14
2	-1260.80	-12.00	-5.97	-3.10	5.97	21.36	0.28
3	-17.60	388.30	0.77	3.27	5.67	21.36	0.27
4	-1376.80	32.00	6.55	-3.32	6.55	21.36	0.31

Maximale Ausnutzung U = 0.31 < 1.00

σ_{V,Ed} - Vergleichsspannung σ_{Rd} - Grenznormalspannung τ_{Rd} - Grenzschubspannung U - Ausnutzung

2.4.3. Schweißnaht zwischen Fußplatte und Schubdübel

Bemessung nach dem richtungsbezogenen Verfahren entsprechend Abschnitt 4.5.3.2

 $\sigma V_{,W,Ed} = (\sigma_{\perp}^2 + 3 \cdot \tau_{\perp}^2 + 3 \cdot \tau_{||}^2)^{0.5},$

 $f_{1,w,Rd} = f_u/(\beta_w \cdot \gamma_{M2})$ $f_{2,w,Rd} = 0.9 \cdot f_u/\gamma_{M2}$

 $U = max\{ \sigma_{V,w,Ed}/f_{1,w,Rd}, \sigma_{\perp}^{2}/f_{2,w,Rd} \}$

Die Verbindung wird mit einer Doppelkehlnaht ausgeführt.

Die Normalkraft wird zu 100 % durch die Schweißnaht übertragen.

2.4.3.1. Stegnaht

Mindestwert der Schweißnahtdicke $a_{min} = 6 \text{ mm}$

LK	aw	σ_{\perp}	$ au_{\perp}$	τιι	σV,w,Ed	f1,w,Rd	f2,w,Rd	U
	mm	kN/cm²	kN/cm²	kN/cm²	kN/cm²	kN/cm²	kN/cm²	-
1	6	0.00	0.00	-3.07	5.32	40.91		0.13
2	6	0.00	0.00	-0.12	0.21	40.91		0.01
3	6	0.00	0.00	5.66	9.80	40.91		0.24
4	6	0.00	0.00	0.32	0.56	40.91		0.01

Maximale Nahtdicke $a_{w,max} = 6 \text{ mm}$

Maximale Ausnutzung U = 0.24 < 1.00

2.4.3.2. Flanschnaht

Mindestwert der Schweißnahtdicke $a_{min} = 6 \text{ mm}$

LK	aw	$\sigma_{\!\perp}$	τ⊥	τιι	σV,w,Ed	f1,w,Rd	f2,w,Rd	U
	mm	kN/cm²	kN/cm²	kN/cm²	kN/cm²	kN/cm²	kN/cm²	=
1	6	0.74	0.74	-0.12	1.49	40.91	29.45	0.04
2	6	8.20	8.20	4.56	18.20	40.91	29.45	0.44
3	6	-1.20	-1.20	0.09	2.41	40.91	29.45	0.06
4	6	-9.01	-9.01	4.98	19.97	40.91	29.45	0.49

Maximale Nahtdicke $a_{w,max} = 6 \text{ mm}$

Maximale Ausnutzung U = 0.49 < 1.00

 a_W - Schweißnahtdicke σ_\perp^2 - Normalspannungen senkrecht zur Naht τ_\perp^2 - Schubspannungen senkrecht zur Naht

 $\tau_{\rm H}^2$ - Schubspannungen parallel zur Naht $\,$ U - Ausnutzung

3. Zusammenfassung

Alle geführten Nachweise und Bemessungen konnten erfolgreich durchgeführt werden.

Maximale Ausnutzungen bei den einzelnen Nac	chweisen
Schweißnaht zwischen Stütze und Fußplatte	84%
Spannungen in der Fußplatte	29%
Pressungen unter der Fußplatte	57%
Ankerzugkräfte	53%
Schubdübe1	100%