
4H-EC3KF Version: 4/2024-1d

Eingespannter Stahlstützenfuß

Stahlnachweise nach DIN EN 1993-1:2010-12 mit NA-Deutschland

Stützenquerschnitt

genormtes Profil: R 273.0 x 12.5(w), der Güte S235

Fußplatte

b = 283 mm h = 283 mm t = 10 mm, der Güte S235

Mörtelfuge unter Fußplatte

 $h_f = 40 \text{ mm}$

Fundament

Betongüte C25/30

 $H\ddot{o}he = 100.0 \text{ cm}$

Spaltzugbewehrung ist vorhanden

Belastung

1.1. Bemessungswerte der Stützenlast

Angriffspunkt im Schwerpunkt der Stütze

L	_K	Bezeichnung.	Bemessungssit.	Nst,d	My,St,Ed	Hz,St,Ed	Mz,St,Ed	Hy,St,Ed
				kN	kNm	kN	kNm	kN
	1	neuer Bem.lastfall	ständig u.v.	98.00	164.00	63.00	0.00	0.00

2. Nachweis

2.1. Materialsicherheitsbeiwerte

Bemessungssit.	γM0	γM2	γc
ständig	1.00	1.25	1.50

2.2. Einspanntiefe

Ermittlung der erforderlichen Einspanntiefe entsprechend [1]

2.2.1. Erforderliche Einspanntiefe für Biegung um die y-Achse

Beiwert mitwirkenden Breite Mitwirkenden Breite = 273.0 mm b_{m} Resultierende Pressung = 38.67 kN/cm $V_{p1,z} = 883.60 \text{ kN}$ zul. plastische Querkraft

Erforderliche Einspanntiefe

LK	Do	Du	Du/V _{p1,z}	ferf	
	kN	kN	-	cm	
1	620.46	557.46	0.63	47.8	

D₀/D_u - res. Druckkraft oben/unten ferf - erf. Einspanntiefe

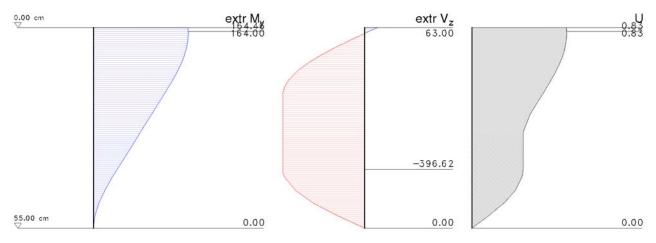
Maximal erforderliche Einspanntiefe für Biegung um die y-Achse $f_{erf,y} = 47.8$ cm

2.2.2. Einspanntiefe festlegen

erforderlich ferf = 47.8 cm (aus LK 1, Bieg. um y-Achse)

Mindestwert $f_{min} = 2.0 \cdot 27.30 = 54.6 > 47.8 \text{ cm}$ Höchstwert $f_{max} = 4.0 \cdot 27.30 = 109.2 > 47.8 \text{ cm}$ = **55.0** > 54.6 cm gewählt fgew

2.3. Querschnittstragfähigkeit


Plastischer Spannungsnachweis erfolgt nach [2], Abs. 6.2.2 bis 6.2.10.

2.3.1. Abstützkräfte

	M_y/V_z						
LK	a_0	au	D_{o}	Du			
	cm	CM	kΝ	kΝ			
1	18.7	16.1	460.22	397.22			

a₀/a_u - Druckbereich oben/unten D₀/D_u - res. Druckkraft oben/unten

2.3.2. Extremale Schnittgrößen

Extremwerte der Normalkraft: Nmin / Nmax = 98.00 / 98.00 kN

	extr	Му	extr	U	
Х	Min	Max	Min	Max	
cm	kNm	kNm	kNm	kNm	
0.00	164.00	164.00	63.00	63.00	0.83
1.10	164.46	164.46	20.59	20.59	0.83
2.20	164.45	164.45	-21.45	-21.45	0.83
18.68	121.15	121.15	-396.62	-396.62	0.61
55.00	0.00	0.00	0.00	0.00	0.00

Maximale Ausnutzung U = 0.83 < 1.00

Aus Lastkollektiv 1 an der Stelle x = 1.10 cm

Schnittgrößen: N = 98.00 kN, $V_z/M_y = 20.59/164.46$ kNm

Ausnutzung: $U_{\sigma} = 0.83$

2.4. Schweißnaht zwischen Stütze und Fußplatte

Bemessung nach dem richtungsbezogenen Verfahren entsprechend Abschnitt 4.5.3.2

 $\sigma_{1,w,Ed} = \left(\sigma_{\perp}^{2} + 3 \cdot \tau_{\perp}^{2} + 3 \cdot \tau_{||}^{2}\right)^{0.5}$

$$\begin{split} \sigma_{2,w,Ed} &= \sigma_{\perp} \\ f_{1,w,Rd} &= f_u / (\beta_{w\cdot \gamma M2}) \end{split}$$

 $f_{2,w,Rd} = 0.9 f_u/\gamma_{M2}$

 $U = max\{ \sigma_{1,w,Ed}/f_{1,w,Rd}, \sigma_{2,w,Ed}/f_{2,w,Rd} \}$

Die Verbindung wird mit einer umlaufenden Kehlnaht ausgeführt.

Die Normalkraft wird zu 100 % durch die Schweißnaht übertragen.

Mindestwert der Schweißnahtdicke $a_{\text{min}} = 3 \text{ mm}$

LK	aw	$\sigma_{\!\perp}$	$ au_{\perp}$	τιι	σ1,w,Ed	f1,w,Rd	σ2,w,Ed	f2,w,Rd	U
	mm	N/mm²	N/mm^2	N/mm^2	N/mm²	N/mm²	N/mm²	N/mm²	-
1	3	-26.93	-26.93	0.00	53.87	360.00	26.93	259.20	0.15

 a_W - Schweißnahtdicke σ_\perp - Normalspannungen senkrecht zur Naht τ_\perp - Schubspannungen senkrecht zur Naht au_{II} - Schubspannungen parallel zur Naht $\,$ U - Ausnutzung

Maximale Nahtdicke $a_{w,max} = 3 \text{ mm}$

Maximale Ausnutzung U = 0.15 < 1.00

2.5. Einleitung der Normalkraft in das Fundament

Nachweis nach [4], Abschn. 6.2.5 und Tragfähigkeit der Teilflächen nach [3], Abschn.6.7

2.5.1. Anforderung an den Mörtel unter der Fußplatte

0.2 fache der kleinsten Plattenabmessung = 56.6 > 40 mm Mörtelhöhe ⇒ Die chark. Festigkeit des Mörtels sollte mindestens 20% des Fundamentbetons betragen.

2.5.2. Lastausbreitung

 $c = t \cdot [f_y/3 \cdot f_{jd} \cdot \gamma_{M0})]^{0.5} \le 0.5 \cdot (h-2 \cdot t)$

Es wird von einer ungestörten Lastausbreitung ausgegangen.

Ausbreitungsbreite = 16.6 mmBelastungsfläche $= 177.59 \text{ cm}^2$ Verteilungsfläche $= 3663.80 \text{ cm}^2$

2.5.3. Tragfähigkeit

 $F_{C,Rdr} = f_{jd} \cdot A_{c0}$ $f_{jd} = \beta_j F_{Rdu}/A_{c0}$

 $F_{Rdu} = A_{c0} \cdot f_{cd} \cdot (A_{c1}/A_{c0})^{0.5} \le 3.0 \cdot f_{cd} \cdot A_{c0}$

= 2/3Anschlussbeiwert βj

 $= 28.33 \text{ N/mm}^2$ Bemessungswert der Mörtelfestigkeit fjd Tragfähigkeit auf Druck Fc,Rd = 503.17 kN

2.5.4. Ausnutzung

 $U = N_{Ed}/F_{C,Rd}$

Maximale Druckkraft (LK 1) $N_{Ed} = 98.00 < 503.17 \text{ kN}$

Ausnutzung U = 0.19 < 1.00

Zusammenfassung

Alle geführten Nachweise und Bemessungen konnten erfolgreich durchgeführt werden.

erforderliche Einspanntiefe des Stützenquerschnittes ferf = 47.8 cm gewählte Einspanntiefe $f_{gew} = 55.0 > 47.8 \text{ cm}$ $\mu_{\text{max}} = 0.83$ Tragfähigkeit des Stützenquerschnittes Schweißnaht zwischen Stütze und Fußplatte $\mu_{\text{max}} = 0.15$ Einleitung der Normalkraft $\mu_{\text{max}} = 0.19$

Literatur und Normen:

[1] R. Kindmann, J. Vette: Tragf. von Stahrohren im Einspannbereich, Stahlbau 90, Heft 1, Ernst & Sohn, 2021 [2] DIN EN 1993-1-1: Eurocode 3: Bem. und Konstr. von Stahlbauten - Teil 1-1: Allg. Bem.regeln u. Regeln für den Hochbau, Dez. 2010

[3] DIN EN 1992-1-1: Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken, Teil 1-1, Januar 2011

[4] DIN EN 1993-1-8: Eurocode 3: Bemessung und Konstruktion von Stahlbauten - Teil 1-8: Bemessung von Anschlüssen, Dez. 2010